Study on the Selection of Processing Process and Parameters of Platycodon grandiflorum Seeds Assisted by Machine Vision Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Materials and Equipment
2.2. Method
2.2.1. Image Scanning and Extraction of Physical Features of Seeds and Impurities
2.2.2. Single Seed Germination Test
2.2.3. Material Characteristics and Correlation Analysis
2.2.4. Real Equipment Sorting Verification
2.2.5. Data Analysis
3. Results
3.1. Correlation Analysis of Seeds’ Material Characteristics with Clarity and Viability
3.2. Single Feature Sorting Effect
3.3. Combination Sorting Effect Comparison and Preliminary Determination of the Processing Process
3.4. Real Equipment Sorting Verification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, A.; Pei, W.; Li, S.; Wang, T.; Song, H.; Kang, T.; Zhang, H. Integrated metabolomic and transcriptomic analysis reveals variation in the metabolites and genes of Platycodon grandiflorus roots from different regions. Phytochem. Anal. 2022, 33, 982–994. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Lee, Y.S.; Jeong, H.C.; Lee, S.H.; Lee, H.J. Mitigation effects of red Platycodon grandiflorum extract on lipopolysaccharide-induced inflammation in splenocytes isolated from mice. J. Nutr. Health 2019, 52, 243–249. [Google Scholar] [CrossRef]
- Cui, Y. Study on the Seeds Grading, Herbs Harvesting, Processing and Packaging Materials of Grandiflorum in the Yingshan Area. Master’s Thesis, Hubei University of Chinese Medicine, Hubei, China, 30 May 2016. (In Chinese). [Google Scholar]
- DB/T15.1297-2017; Classification of Seed Quality of Platycodon grandiflorum. Inner Mongolia Autonomous Region Bureau of Quality and Technical Supervision: Hohhot, China, 2017. (In Chinese)
- DB/T13.1320.3-2010; Quality Standards for Seeds of Chinese Medicinal Materials Part 3: Platycodon grandiflorum. Hebei Provincial Bureau of Quality and Technical Supervision: Shijiazhuang, China, 2010. (In Chinese)
- De Jesus, M.A.; Reis, V.M.A.; Sampaio, F.R.; Posse, F.L.; Barbosa, R.M. Quality control charts in the processing of soybean seeds. J. Seed Sci. 2021, 43, e202143031. [Google Scholar] [CrossRef]
- Zhou, L. Primary processing technology of origin of Chinese medicinal materials. Contemp. Hortic. 2021, 44, 96–97. (In Chinese) [Google Scholar]
- Sun, Q.; Hu, J.; Sun, Q.Q. Seed Processing and Storage, 1st ed.; Higher Education Press: Beijing, China, 2008; p. 116. (In Chinese) [Google Scholar]
- Bao, Y.; Yi, S.; Tao, G.; Mao, X.; Zhang, Z. Experimental study on the material properties of Isatis indigotica seeds. J. Agric. Mech. Res. 2022, 9, 202–208+216. (In Chinese) [Google Scholar]
- Darfour, B.; Ayeh, E.A.; Odoi, K.M.; Mills, S.W.N.O. Physical characteristics of maize grain as influenced by varietal and moisture differences. Int. J. Food Prop. 2022, 25, 1351–1364. [Google Scholar] [CrossRef]
- Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G.A.; Pachidis, T.P.; Kaburlasos, V.G. Machine Vision for Ripeness Estimation in Viticulture Automation. Horticulturae 2021, 7, 282. [Google Scholar] [CrossRef]
- Darwin, B.; Dharmaraj, P.; Prince, S.; Popescu, D.E.; Hemanth, D.J. Recognition of Bloom/Yield in Crop Images Using Deep Learning Models for Smart Agriculture: A Review. Agronomy 2021, 11, 646. [Google Scholar] [CrossRef]
- Xu, Y.; Tu, K.; Cheng, Y.; Hou, H.; Cao, H.; Dong, X.; Sun, Q. Application of Digital Image Analysis to the Prediction of Chlorophyll Content in Astragalus Seeds. Appl. Sci. 2021, 11, 8744. [Google Scholar] [CrossRef]
- Tu, K.; Li, L.; Yang, L.; Wang, J.; Sun, Q. Selection for high quality pepper seeds by machine vision and classifiers. J. Integr. Agric. 2018, 17, 1999–2006. [Google Scholar] [CrossRef]
- Tu, K.; Wen, S.; Cheng, Y.; Zhang, T.; Pan, T.; Wang, J.; Wang, J.; Sun, Q. A non-destructive and highly efficient model for detecting the genuineness of maize variety “JINGKE 968” using machine vision combined with deep learning. Comput. Electron. Agric. 2021, 182, 106002. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Y.; Hou, H.; Ning, C.; Yang, C.; Dong, X.; Cao, H.; Sun, Q. Rapid seed clarity detection methods of small Chinese medicinal plants based on machine vision technology. J. China Agric. Univ. 2022, 27, 114–122. (In Chinese) [Google Scholar]
- Bi, C.; Hu, N.; Zou, Y.; Zhang, S.; Xu, S.; Yu, H. Development of Deep Learning Methodology for Maize Seed Variety Recognition Based on Improved Swin Transformer. Agronomy 2022, 12, 1843. [Google Scholar] [CrossRef]
- Ospanov, A.B.; Kulzhanova, B.O.; Tolybayev, S.D. Research of technological parameters of colour sorting of alfalfa seed mixture. Int. J. Agric. Resour. Gov. Ecol. 2021, 17, 316–327. [Google Scholar]
- Carmack, W.J.; Clark, A.; Dong, Y.H.; Brown-Guedira, G.; Van Sanford, D. Optical Sorter-Based Selection Effectively Identifies Soft Red Winter Wheat Breeding Lines with Fhb1 and Enhances FHB Resistance in Lines with and Without Fhb1. Front. Plant Sci. 2020, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Brabec, D.; Guttieri, M.J.; Pearson, T.; Carsrud, B. Effectiveness of an Image-based Sorter to Select for Kernel Color within Early Segregating Hard Winter Wheat (Triticum aestivum L.) Populations. Cereal Res. Commun. 2017, 45, 488–499. [Google Scholar] [CrossRef] [Green Version]
- GB/T 2930.4-2017; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rules of Seed Testing for Forage, Turfgrass and Other Herbaceous Plant: Germination Test. Standardization Administration of the People’s Republic of China: Beijing, China, 2017. (In Chinese)
- Rabindra, K.; Brijendra, K.; Kumar, R.; Koli, B. Effectiveness of seed processing machinery on seed quality improvement in wheat (Triticum aestivum L.). J. AgriSearch 2015, 2, 300–303. [Google Scholar]
- Cheng, Y. Application of High throughput Phenotypic Detection Technologies on Seed Testing and Processing of Scutellaria baicalensis and Platycodon grandiflorum. Master’s Thesis, China Agricultural University, Beijing, China, 31 May 2022. (In Chinese). [Google Scholar]
- Ji, Y.; Wu, P.; Wang, C.; Zhong, Q.; Wu, Z.; Liu, M. Effects of winnowing and priming on the seed germination and seedling growth of pepper. China Cucurbits Veg. 2020, 33, 29–32. (In Chinese) [Google Scholar]
Name | Place of Origin | Year of Production | Clarity/% | Germination Percentage/% |
---|---|---|---|---|
Lot 1 | Hebei Anguo | August 2020 | 96.5 | 85.7 |
Lot 2 | Zhangjiakou | August 2021 | 95.2 | 74.0 |
Lot 3 | Shandong | November 2020 | 96.2 | 44.3 |
Lot 4 | Anhui | October 2020 | 95.1 | 65.7 |
Phenotypic Features | Quantity Clarity | Viability | ||
---|---|---|---|---|
Correlation Coefficient | Coefficient of Variation | Correlation Coefficient | Coefficient of Variation | |
Length/mm | 0.636 ** | 0.30 | / | / |
Width/mm | 0.236 ** | 0.19 | 0.094 ** | 0.13 |
L/W | 0.323 ** | 0.37 | −0.075 * | 0.16 |
Area/mm2 | 0.762 ** | 0.39 | 0.084 * | 0.20 |
Perimeter/mm | 0.515 ** | 0.23 | / | / |
Roundness | 0.201 ** | 0.19 | 0.104 ** | 0.12 |
R | −0.782 ** | 0.29 | / | / |
G | −0.851 ** | 0.33 | / | / |
B | −0.792 ** | 0.31 | / | / |
R/G | 0.594 ** | 0.09 | / | / |
R/B | 0.196 ** | 0.12 | / | / |
G/B | −0.377 ** | 0.09 | / | / |
L | −0.846 ** | 0.31 | / | / |
a | 0.439 ** | 0.52 | / | / |
b | −0.645 ** | 0.35 | / | / |
H | −0.285 ** | 0.22 | / | / |
S | 0.360 ** | 0.23 | / | / |
V | −0.811 ** | 0.29 | / | / |
Gray | −0.836 ** | 0.31 | / | / |
Sorting Feature | Parameters | Quantity Clarity | Viability | ||||
---|---|---|---|---|---|---|---|
Precision/% | Recall/% | F1 | Precision/% | Recall/% | F1 | ||
Length/mm | <1.4 | 0.0 | 0.0 | NA | 100.0 | 0.5 | 0.010 |
1.4–1.8 | 48.6 | 17.0 | 0.252 | 50.0 | 3.4 | 0.063 | |
≥1.8 | 83.6 | 83.0 | 0.833 | 51.7 | 96.1 | 0.672 | |
Width/mm | <0.6 | 0.0 | 0.0 | NA | 100.0 | 0.5 | 0.010 |
0.6–0.8 | 17.9 | 5.0 | 0.078 | 25.0 | 1.4 | 0.027 | |
≥0.8 | 59.0 | 95.0 | 0.728 | 52.5 | 98.1 | 0.684 | |
R | <85 | 90.6 | 92.7 | 0.916 | 51.5 | 93.7 | 0.664 |
85–100 | 25.3 | 7.0 | 0.110 | 58.8 | 4.8 | 0.089 | |
≥100 | 0.5 | 0.3 | 0.004 | 50.0 | 1.4 | 0.028 | |
G | <75 | 95.0 | 95.3 | 0.952 | 46.2 | 84.5 | 0.597 |
75–90 | 28.0 | 4.7 | 0.080 | 62.5 | 4.8 | 0.090 | |
≥90 | 0.0 | 0.0 | NA | 40.0 | 1.0 | 0.019 | |
B | <60 | 92.2 | 91.0 | 0.916 | 52.1 | 79.7 | 0.630 |
60–75 | 26.0 | 9.0 | 0.134 | 50.7 | 17.9 | 0.264 | |
≥75 | 0.0 | 0.0 | NA | 50.0 | 2.4 | 0.046 |
Sorting Combinations and Parameters | Quantity Clarity | ||
---|---|---|---|
Precision/% | Recall/% | F1 | |
Width (≥0.8 mm) + G (<75) | 98.6 | 91.0 | 0.946 |
Length (≥1.8 mm) + G (<75) | 98.3 | 79.0 | 0.876 |
Width (≥0.8 mm) + length (≥1.8 mm) | 90.2 | 80.0 | 0.848 |
Width (≥0.8 mm) + length (≥1.8 mm) + G (<75) | 99.1 | 76.3 | 0.863 |
Processing | Clarity/% | Thousand Seed Weight/g | Germination Percentage/% | Recall (Weight)/% |
---|---|---|---|---|
Original seed | 96.5 ± 0.4 d | 1.13 ± 0.06 a | 85.7 ± 2.1 cd | / |
Air separation | 97.6 ± 0.5 c | 1.13 ± 0.03 a | 88.0 ± 2.6 bcd | 98.2 |
Air separation—round hole sieve | 98.1 ± 0.1 bc | 1.07 ± 0.10 ab | 91.7 ± 0.6 ab | 97.2 |
Air separation—round hole sieve—primary color sorting | 99.1 ± 0.1 a | 1.11 ± 0.04 a | 94.3 ± 2.1 a | 40.2 |
Air separation—round hole sieve—secondary color sorting | 98.6 ± 0.5 ab | 1.06 ± 0.03 ab | 89.3 ± 3.5 abc | 26.4 |
Air separation—round hole sieve—color sorting nonconformance product | 98.1 ± 0.2 bc | 0.98 ± 0.03 b | 83.0 ± 4.4 d | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Cheng, Y.; Tu, K.; Ning, C.; Yang, C.; Dong, X.; Cao, H.; Sun, Q. Study on the Selection of Processing Process and Parameters of Platycodon grandiflorum Seeds Assisted by Machine Vision Technology. Agronomy 2022, 12, 2764. https://doi.org/10.3390/agronomy12112764
Wu W, Cheng Y, Tu K, Ning C, Yang C, Dong X, Cao H, Sun Q. Study on the Selection of Processing Process and Parameters of Platycodon grandiflorum Seeds Assisted by Machine Vision Technology. Agronomy. 2022; 12(11):2764. https://doi.org/10.3390/agronomy12112764
Chicago/Turabian StyleWu, Weifeng, Ying Cheng, Keling Tu, Cuiling Ning, Chengmin Yang, Xuehui Dong, Hailu Cao, and Qun Sun. 2022. "Study on the Selection of Processing Process and Parameters of Platycodon grandiflorum Seeds Assisted by Machine Vision Technology" Agronomy 12, no. 11: 2764. https://doi.org/10.3390/agronomy12112764
APA StyleWu, W., Cheng, Y., Tu, K., Ning, C., Yang, C., Dong, X., Cao, H., & Sun, Q. (2022). Study on the Selection of Processing Process and Parameters of Platycodon grandiflorum Seeds Assisted by Machine Vision Technology. Agronomy, 12(11), 2764. https://doi.org/10.3390/agronomy12112764