Is It Possible to Control the Nutrient Regime of Soils with Different Texture through Biochar Substrates?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Research Design
2.2. Soil Analyzes
2.3. Statistical Analyzes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kobza, J. Aktuálny stav a vývoj obsahu prístupného draslíka v poľnohospodárskych pôdach Slovenska [Current state and development of available potassium in agricultural soils of Slovakia]. Agrochemistry 2019, 2, 12–17. Available online: http://agrochemia.uniag.sk/pdf/agrochemia_2_kobza_3.pdf (accessed on 19 March 2021). (In Slovak).
- Ložek, O.; Slamka, P.; Gáborík, Š.; Vicianová, M.; Kobza, J. Dynamika zmien obsahu prístupného fosforu v pôdach na Slovensku [The dynamics of changes of available phosphorus soil content in Slovakia]. Agrochemistry 2019, 1, 3–12. Available online: http://agrochemia.uniag.sk/pdf/agrochemia_1_2019_lozek_1.pdf (accessed on 20 March 2021). (In Slovak).
- Kováčik, P.; Ryant, P. Agrochémia, Princípy A Prax [Agrochemistry, Principles and Practice]; SPU: Nitra, Slovakia, 2019; p. 358. (In Slovak) [Google Scholar]
- Vaněk, V.; Ložek, O.; Balík, J.; Pavlíková, D.; Tlustoš, P. Výživa Poľných a Záhradných Plodín [Nutrition of Field and Garden Crops]; Profi Press: Praha, Czechia, 2013; p. 175. (In Slovak) [Google Scholar]
- Šimanský, V.; Polláková, N.; Chlpík, J.; Kolenčík, M. Pôdoznalectvo [Soil Science]; SPU: Nitra, Slovakia, 2018; p. 398. (In Slovak) [Google Scholar]
- Kováčik, P. Princípy a Spôsoby Výživy Rastlín. [Principles and Methods of Plant Nutrition]; SPU: Nitra, Slovakia, 2014; p. 278. (In Slovak) [Google Scholar]
- Jeffery, S.; Abalos, D.; Spokas, K.A.; Verheijen, F.G.A. Biochar effects on crop yield. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehman, J., Joseph, S., Eds.; Routledge: London, UK, 2015; pp. 301–325. [Google Scholar]
- Ajema, L. Effects of biochar application on beneficial soil organism review. Int. J. Res. Stud. Sci. Eng. Technol. 2018, 5, 9–18. [Google Scholar]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, S.; Chowdhury, M.B.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Gundale, M.J.; MacKenzie, M.D.; Jones, D.L. Biochar effects on soil nutrient transformations. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehman, J., Joseph, S., Eds.; Routledge: London, UK, 2015; pp. 421–454. [Google Scholar]
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Mapope, N. Synthesis and nutrient release patterns of a biocharbased N-P-K slow-release fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Šimanský, V.; Aydın, E.; Igaz, D.; Horák, J. Biochar application should be promoted for longer term environmental benefits instead of immediate economical profits: Case study on Haplic Luvisol in Slovakia. Agriculture 2020, 66, 171–176. [Google Scholar] [CrossRef]
- Šimanský, V.; Horák, J.; Polláková, N.; Juriga, M.; Jonczak, J. Will the macro and micronutrient content in biochar show in the higher content of the individual parts of corn? J. Elem. 2019, 24, 525–537. [Google Scholar]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystic Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Turky, M.M.; El-Sayed, M.M.; Awad, M.Y.; Abdel-Mawgoud, A.S.A. Use natural soil amendments in improving hydro-physical properties and wheat crop production of a new reclaimed area, Sohag governorate, Egypt. Arch. Agric. Sci. J. 2020, 3, 214–230. [Google Scholar] [CrossRef]
- Prakongkep, N.; Gilkes, R.J.; Wisawapipat, W.; Leksungnoen, P.; Kerdchana, C.; Inboonchuay, T.; Delbos, E.; Strachan, L.J.; Ariyasakul, P.; Ketdan, C.; et al. Effects of biochar on properties of tropical sandy soils under organic agriculture. J. Agric. Sci. 2021, 13, 1. [Google Scholar] [CrossRef]
- Šimanský, V.; Jonczak, J.; Parzych, A.; Horák, J. Contents and bioaccumulation of nutrients from soil to corn organs after application of different biochar doses. Carpathian J. Earth Environ. Sci. 2018, 13, 315–324. [Google Scholar] [CrossRef]
- Laghari, M.; Mirjat, M.S.; Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- El-Naggar, A.; Soo Lee, S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Sik Ok, Y. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 13 June 2021).
- Šrank, D.; Šimanský, V. Physical properties of texturally different soils after application of biochar substrates. Agriculture. 2020, 66, 45–55. [Google Scholar] [CrossRef]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezáková, Z.; Dodok, R.; Grečo, V.; Chlpík, J.; Kobza, J.; Lištjak, J.; et al. Jednotné Pracovné Postupy Rozborov Pôd. [Uniform Operation Procedures of Soil Analyses]; VÚPOP: Bratislava, Slovakia, 2011; p. 113. (In Slovak) [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Horák, J. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Hortic. Regiotect. 2015, 18, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Teutscherova, N.; Vazquez, E.; Masaguer, A.; Navas, M.; Scow, K.M.; Schmidt, R.; Benito, M. Comparison of lime- and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil. Biol. Fertil. Soils 2017, 53, 811–821. [Google Scholar] [CrossRef]
- Mandal, S.; Donner, E.; Vasileiadis, S.; Skinner, W.; Smith, E.; Lombi, E. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Sci. Total Environ. 2018, 627, 942–950. [Google Scholar] [CrossRef]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Yuang, J.H.; Xu, R.K. The forms of alkalis in the biochars produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Šimanský, V.; Horák, J.; Igaz, D.; Balashov, E.; Jonczak, J. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J. Soils Sediments 2018, 18, 1432–1440. [Google Scholar] [CrossRef]
- Lehmann, J.; Stephen, J. Biochar effect on soil hydrology. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehman, J., Joseph, S., Eds.; Routledge: London, UK, 2015; pp. 543–563. [Google Scholar]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern Coastal Plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Casson, J.P.; Bennett, D.R.; Nolan, S.C.; Olson, B.M.; Ontkean, G.R. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta. J. Environ. Qual. 2006, 35, 2212–2221. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.; Shao, H.; Chang, S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Xu, C.Y.; Hosseini-Bai, S.; Hao, Y.; Rachaputi, R.; Wang, H.; Xu, Z.; Wallace, H. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ. Sci. Pollut. Res. 2015, 22, 6112–6125. [Google Scholar] [CrossRef]
- Soinne, H.; Hovi, J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 2014, 219–220, 162–167. [Google Scholar] [CrossRef]
- Nelson, N.O.; Agudelo, S.C.; Yuan, W.Q.; Gan, J. Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci. 2011, 176, 218–226. [Google Scholar] [CrossRef]
- Ngatia, L.W.; Hsieh, Y.P.; Nemours, D.; Fu, R.; Taylor, R.W. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption. Chemosphere 2017, 180, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. Biochar in European Soils and Agriculture; Routledge: New York, NY, USA; London, UK, 2016; p. 301. [Google Scholar]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Sik Ok, Y.; Siddique, K.H.M. Biochar for crop production: Potential benefits and risks. J. Soils Sed. 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Yu, X.; Tian, X.; Lu, Y.; Liu, Z.; Guo, Y.; Chen, J.; Li, C.; Zhang, M.; Wan, Y. Combined effects of straw-derived biochar and bio-based polymer-coated urea on nitrogen use efficiency and cotton yield. Chem. Speciat. Bioavailab. 2018, 30, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Wang, J.J.; Gaston, L.A.; Zhou, B.; Park, J.; Li, R.; Dodla, S.K.; Zhang, Z. Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration. Waste Manag. 2018, 78, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Mendez, A.; Gomez, A.; Paz-Ferreiro, J.; Gasco, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
Soil Property | Dolná Streda Sandy Haplic Arenosol (Arenic, Calcic) | Veľké Úľany Loamy Vermic Chernozem (Mollic, Loamic) |
---|---|---|
Sand (%) | 81.9 | 38.5 |
Silt (%) | 10.5 | 47.8 |
Clay (%) | 7.60 | 13.7 |
OC (g kg−1) | 9.70 | 15.6 |
Total N (mg kg−1) | 1300 | 1000 |
Available P (mg kg−1) | 175 | 129 |
Available K (mg kg−1) | 165 | 255 |
pH | 7.60 | 7.78 |
BS1 | BS2 | |
---|---|---|
Pellets (dimensions in mm) | 2 ∙ 2 ∙ 1 | 2 ∙ 2 ∙ 1 |
OC (%) | 43 | 45.4 |
Total N (%) | 1.20 | 1.30 |
Total P (%) | 0.49 | 0.79 |
Total K (%) | 24.6 | 15.5 |
pH | 8.18 | 8.44 |
Total Ca (mg kg−1) | 42,000 | 22,000 |
Total Mg (mg kg−1) | 4500 | 5800 |
Treatments | pH | Ha | SBC | CEC | Bs |
---|---|---|---|---|---|
mmol kg−1 | mmol kg−1 | mmol kg−1 | % | ||
Sandy soil | |||||
Co | 7.41 ± 0.19 a | 3.29 ± 0.49 a | 19.7 ± 5.85 a | 23.0 ± 6.10 a | 81.3 ± 1.30 a |
BS1 10 t ha−1 | 7.57 ± 0.16 ab | 3.19 ± 1.22 a | 24.8 ± 7.20 ab | 28.0 ± 7.30 ab | 88.3 ± 5.13 ab |
BS1 20 t ha−1 | 7.53 ± 0.14 ab | 2.94 ± 0.78 a | 34.1 ± 8.12 ab | 37.0 ± 8.13 ab | 91.7 ± 1.27 b |
BS2 10 t ha−1 | 7.63 ± 0.20 b | 2.57 ± 0.41 a | 28.7 ± 8.10 ab | 31.3 ± 9.11 ab | 91.1 ± 2.47 ab |
BS2 20 t ha−1 | 7.63 ± 0.12 b | 2.80 ± 0.45 a | 41.9 ± 7.10 b | 44.6 ± 7.98 b | 92.9 ± 2.15 b |
Co–F | 7.51 ± 0.20 a | 3.35 ± 0.44 a | 46.5 ± 8.75 bc | 49.8 ± 9.90 bc | 92.1 ± 3.79 a |
BS1 10 t ha−1 + F | 7.59 ± 0.22 a | 3.00 ± 1.34 a | 29.6 ± 5.61 ab | 32.5 ± 1.00 ab | 91.0 ± 2.46 a |
BS1 20 t ha−1 + F | 7.58 ± 0.12 a | 3.64 ± 1.75 a | 57.4 ± 5.33 c | 61.0 ± 6.13 c | 93.9 ± 2.84 a |
BS2 10 t ha−1 + F | 7.45 ± 0.26 a | 3.38 ± 2.00 a | 25.6 ± 5.45 a | 29.0 ± 5.34 a | 87.3 ± 3.39 a |
BS2 20 t ha−1 + F | 7.63 ± 0.10 a | 3.19 ± 1.22 a | 34.8 ± 1.09 ab | 38.0 ± 2.31 ab | 91.7 ± 2.72 a |
Loamy soil | |||||
Co | 7.83 ± 0.21 a | 3.14 ± 1.48 a | 492.6 ± 1.48 a | 495.8 ± 2.98 a | 99.4 ± 0.30 a |
BS1 10 t ha−1 | 8.03 ± 0.14 a | 3.01 ± 1.50 a | 490.8 ± 2.47 a | 493.9 ± 2.69 a | 99.4 ± 0.30 a |
BS1 20 t ha−1 | 8.00 ± 0.13 a | 2.55 ± 1.25 a | 491.3 ± 2.82 a | 493.8 ± 2.67 a | 99.5 ± 0.25 a |
BS2 10 t ha−1 | 7.97 ± 0.16 a | 2.60 ± 1.23 a | 491.8 ± 4.37 a | 494.4 ± 2.46 a | 99.5 ± 0.25 a |
BS2 20 t ha−1 | 7.91 ± 0.15 a | 2.88 ± 1.16 a | 492.2 ± 3.82 a | 495.4 ± 3.23 a | 99.4 ± 0.23 a |
Co–F | 7.99 ± 0.14 a | 2.58 ± 0.92 a | 492.4 ± 2.94 a | 495.0 ± 2.07 a | 99.5 ± 0.19 a |
BS1 10 t ha−1 + F | 7.91 ± 0.16 a | 2.78 ± 1.42 a | 492.7 ± 2.57 a | 495.5 ± 2.64 a | 99.4 ± 0.30 a |
BS1 20 t ha−1 + F | 7.98 ± 0.12 a | 2.91 ± 1.38 a | 492.7 ± 2.34 a | 495.6 ± 2.36 a | 99.5 ± 0.29 a |
BS2 10 t ha−1 + F | 8.00 ± 0.17 a | 2.60 ± 1.18 a | 493.4 ± 2.18 a | 496.0 ± 2.05 a | 99.5 ± 0.24 a |
BS2 20 t ha−1 + F | 7.98 ± 0.16 a | 2.85 ± 1.17 a | 492.4 ± 2.61 a | 495.3 ± 2.49 a | 99.4 ± 0.24 a |
Treatment | Total Content (g kg−1) | Available Content (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | P | K | Ca | Mg | |
Sandy soil | ||||||||
Co | 1.15 ± 0.15 a | 11.2 ± 0.34 a | 40.2 ± 1.33 a | 9.52 ± 0.99 a | 374 ± 65 a | 166 ± 78 a | 7362 ± 1376 a | 255 ± 28 a |
BS1 10 t ha−1 | 1.29 ± 0.11 a | 11.5 ± 0.28 a | 40.9 ± 0.99 a | 9.85 ± 1.12 a | 359 ± 39 a | 226 ± 35 a | 6758 ± 2987 a | 231 ± 41 a |
BS1 20 t ha−1 | 1.55 ± 0.08 c | 12.4 ± 0.36 a | 33.5 ± 6.89 a | 8.82 ± 2.53 a | 370 ± 26 a | 239 ± 22 a | 5842 ± 2907 a | 285 ± 36 a |
BS2 10 t ha−1 | 1.17 ± 0.07 a | 11.3 ± 0.41 a | 34.4 ± 5.99 a | 7.99 ± 1.99 a | 336 ± 59 a | 174 ± 41 a | 5803 ± 2699 a | 250 ± 26 a |
BS2 20 t ha−1 | 1.34 ± 0.11 b | 11.8 ± 0.09 a | 31.1 ± 10.3 a | 7.36 ± 2.37 a | 396 ± 19 a | 215 ± 59 a | 5371 ± 2639 a | 275 ± 39 a |
Co–F | 1.06 ± 0.05 a | 11.5 ± 0.23 a | 29.8 ± 9.87 a | 7.23 ± 3.07 a | 329 ± 44 a | 200 ± 28 a | 5773 ± 1563 a | 280 ± 55 a |
BS1 10 t ha−1 + F | 1.12 ± 0.03 ab | 11.2 ± 0.35 a | 39.4 ± 5.89 a | 9.50 ± 2.87 a | 290 ± 39 a | 197 ± 37 a | 5927 ± 1302 a | 294 ± 37 a |
BS1 20 t ha−1 + F | 1.25 ± 0.11 b | 11.6 ± 0.42 a | 32.0 ± 11.4 a | 7.92 ± 2.99 a | 362 ± 48 a | 213 ± 35 a | 8854 ± 2744 b | 281 ± 22 a |
BS2 10 t ha−1 + F | 1.09 ± 0.04 a | 11.7 ± 0.28 a | 32.9 ± 8.34 a | 8.50 ± 1.89 a | 321 ± 62 a | 228 ± 21 a | 7333 ± 974 ab | 310 ± 49 a |
BS2 20 t ha−1 + F | 1.16 ± 0.06 ab | 11.7 ± 0.36 a | 36.9 ± 3.29 a | 9.11 ± 2.75 a | 297 ± 28 a | 263 ± 18 b | 8675 ± 1693 b | 301 ± 38 a |
Loamy soil | ||||||||
Co | 1.01 ± 0.08 a | 14.1 ± 0.44 a | 42.3 ± 5.67 a | 14.9 ± 1.21 a | 166 ± 48 a | 215 ± 36 a | 9156 ± 896 ab | 371 ± 11 a |
BS1 10 t ha−1 | 1.11 ± 0.09 ab | 14.6 ± 0.24 a | 47.9 ± 4.79 a | 16.5 ± 0.33 b | 126 ± 59 a | 199 ± 28 a | 9834 ± 751 b | 366 ± 19 a |
BS1 20 t ha−1 | 1.16 ± 0.10 ab | 14.6 ± 0.31 a | 49.7 ± 3.99 a | 19.6 ± 1.11 c | 147 ± 36 a | 227 ± 39 a | 8967 ± 879 ab | 386 ± 20 a |
BS2 10 t ha−1 | 1.20 ± 0.11 ab | 14.5 ± 0.15 a | 45.0 ± 4.56 a | 16.0 ± 0.46 ab | 159 ± 29 a | 207 ± 26 a | 8618 ± 235 a | 393 ± 26 a |
BS2 20 t ha−1 | 1.54 ± 0.21 b | 14.5 ± 0.09 a | 45.6 ± 3.87 a | 16.4 ± 0.49 b | 149 ± 37 a | 208 ± 37 a | 8334 ± 649 a | 380 ± 17 a |
Co–F | 1.07 ± 0.04 a | 14.9 ± 0.12 a | 45.8 ± 1.23 a | 17.3 ± 0.12 a | 141 ± 33 a | 191 ± 68 a | 9875 ± 976 a | 386 ± 05 a |
BS1 10 t ha−1 + F | 1.09 ± 0.04 a | 14.8 ± 0.22 a | 43.5 ± 4.35 a | 17.0 ± 0.45 a | 166 ± 28 a | 289 ± 73 a | 8125 ± 959 a | 389 ± 03 ab |
BS1 20 t ha−1 + F | 1.22 ± 0.10 b | 15.2 ± 0.37 a | 46.2 ± 2.89 a | 17.9 ± 1.13 a | 157 ± 19 a | 189 ± 77 a | 9429 ± 893 a | 435 ± 20 b |
BS2 10 t ha−1 + F | 1.15 ± 0.12 ab | 14.6 ± 0.18 a | 43.5 ± 4.21 a | 17.1 ± 0.99 a | 156 ± 29 a | 223 ± 71 a | 9689 ± 789 a | 396 ± 17 ab |
BS2 20 t ha−1 + F | 1.16 ± 0.11 ab | 14.4 ± 0.35 a | 42.9 ± 3.51 a | 16.6 ± 2.31 a | 145 ± 34 a | 177 ± 79 a | 8398 ± 941 a | 404 ± 38 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimanský, V.; Aydın, E.; Horák, J. Is It Possible to Control the Nutrient Regime of Soils with Different Texture through Biochar Substrates? Agronomy 2022, 12, 51. https://doi.org/10.3390/agronomy12010051
Šimanský V, Aydın E, Horák J. Is It Possible to Control the Nutrient Regime of Soils with Different Texture through Biochar Substrates? Agronomy. 2022; 12(1):51. https://doi.org/10.3390/agronomy12010051
Chicago/Turabian StyleŠimanský, Vladimír, Elena Aydın, and Ján Horák. 2022. "Is It Possible to Control the Nutrient Regime of Soils with Different Texture through Biochar Substrates?" Agronomy 12, no. 1: 51. https://doi.org/10.3390/agronomy12010051
APA StyleŠimanský, V., Aydın, E., & Horák, J. (2022). Is It Possible to Control the Nutrient Regime of Soils with Different Texture through Biochar Substrates? Agronomy, 12(1), 51. https://doi.org/10.3390/agronomy12010051