DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cajamar, F. Análisis de la campaña hortofrutícola de Almería 2019/2020. In Informes y Monografías; Caja Rural Almeria: Almeria, Spain, 2021; p. 9. [Google Scholar]
- Valera, D.M.; Belmonte, L.; Molina, F.D.; Lopez, A. Greenhouse Agriculture in Almería: A Comprehensive Techno-Economic Análisis; Cajamar Caja Rural: Almería, Spain, 2016; p. 408. [Google Scholar]
- Hallmark, W.B.; Beverly, R.B. Review: An update in the use of the diagnosis and recommendation integrated system. J. Fer. 1991, 8, 74–88. [Google Scholar]
- Llanderal, A. Study of Diagnostic Methods and Evaluation of Nutritional Parameters in the Intensive Horticulture Cropping Systems as Basis for a Sustainable Management of the Fertigation. Ph.D. Thesis, Universidad de Almería, Almeria, Spain, September 2017; p. 197. [Google Scholar]
- Llanderal, A.; Lao, M.T.; Contreras, J.I.; Segura, M.L. Diagnosis and recommendation integrated system norms and sufficiency ranges for tomato greenhouse in Mediterranean climate. HortScience 2018, 53, 479–482. [Google Scholar] [CrossRef]
- Ali, A.M. Nutrient sufficiency ranges in mango using boundary-line approach and compositional nutrient diagnosis norms in El-Salhiya, Egypt. Comm. Soil Sci. Plant Anal. 2018, 49, 188–201. [Google Scholar] [CrossRef]
- Sumner, M.E. Interpretation of foliar analysis for diagnostic purposes. Agron. J. 1979, 71, 343–348. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 3nd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 672. [Google Scholar]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E. Plnt Tissue Analysis and Interpretation for Vegetable Crops in Florida; Florida Coop. Ext. Spec. Ser. SS-VEC-42; University of Florida: Gainesville, FL, USA, 1991. [Google Scholar]
- Cadahía, C. La Savia Como Índice De Fertilización. Cultivos Agroenergéticos, Hortícolas, Frutales Y Ornamentales; Mundi-Prensa: Madrid, Spain, 2008; p. 256. [Google Scholar]
- Sánchez, E.; Soto-Parra, J.M.; Preciado-Rangel, P.; Llanderal, A.; Lao, M.T. DRIS Norms for grafted and non-grafted red bell pepper in semiarid climate conditions in a greenhouse. Hortic. Bras. 2018, 36, 371–376. [Google Scholar] [CrossRef]
- Beaufils, E.R. Physiological diagnosis: A guide for improving maize production based on principles developed for rubber trees. Fert. Soc. S. Afr. J. 1971, 1, 1–28. [Google Scholar]
- Walworth, J.L.; Sumner, M.E. The diagnosis and recommendation integrated system (DRIS). Adv. Soil Sci. 1987, 6, 149–188. [Google Scholar]
- Nick, J.A. DRIS for Coffee Plants; USP/ESALQ: Piracicaba, Brazil, 1998. (In Portuguese) [Google Scholar]
- El-Rheem, K.M.A.; Khaled, S.M.; Zaghoul, S.M. Preliminary DRIS norms for evaluating the nutritional statue of sweet pepper crop. Aust. J. Basic Appl. Sci. 2012, 6, 661–664. [Google Scholar]
- Hernando, V.; Cadahía, C. El Análisis De Savia Como Índice De Fertilización; CSIC, Instituto de Edafología y Biología Vegetal: Madrid, Spain, 1973. [Google Scholar]
- MAPA. Métodos Oficiales de Análisis; Tomo III; Secretaría General Técnica del Ministerios de Agricultura, Pesca y Alimentación: Madrid, Spain, 1986. [Google Scholar]
- Ma, T.; Zuazaga, G. Micro-Kjeldahl Determination of Nitrogen. A new indicator and an improved rapid method. Ind. Eng. Chem. Anal. Ed. 1942, 14, 280–282. [Google Scholar] [CrossRef]
- Bhargava, B.S. Leaf analysis for nutrient diagnosis, recommendation and management in fruit crops. J. Ind. Soc. Soil Sci. 2002, 50, 352–373. [Google Scholar]
- García-Caparrós, P.; Llanderal, A.; Majsztrik, J.; Maksimovic, I.; Lao, M.T. Preliminary nutrient diagnosis norms and optimum ranges in potted ornamental plants grown under saline conditions. J. Plant Nutr. 2019, 42, 2805–2813. [Google Scholar] [CrossRef]
- Guzman, J.M. Nutritional Balance in Greenhouse Conditions: Correction and Improvement of Harvesting. Ph.D. Thesis, University of Granada, Granada, Spain, 1987. (In Spanish). [Google Scholar]
- Casas, A.; Casas, E. Soil-Water-Plant Analysis and Their Application in the Nutrition of Horticultural Crops in the Southeastern of Almeria; Caja Rural Almeria: Almeria, Spain, 1999. [Google Scholar]
- Benton Jones, J.J.; Wolf, B.; Mills, H.A. Plant Analysis Handbook; MicroMacro Publishing, Inc.: Athens, GA, USA, 1991; p. 213. [Google Scholar]
- Maynard, D.N.; Hochmuth, G.J. Knott’s Handbook for Vegetable Growers, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Caront, J.; Parent, L.E. Derivation and assessment of DRIS norms for greenhouse tomatoes. Can. J. Plant Sci. 1989, 69, 1027–1035. [Google Scholar] [CrossRef]
- English, J.E.; Barker, A.V. Ion interactions in Ca-efficient and Ca-inefficient tomato lines. J. Plant Nutr. 1987, 10, 857–869. [Google Scholar] [CrossRef]
- Segura, M.L.; Contreras, J.I.; Salinas, R.; Lao, M.T. Influence of salinity and fertilization level on greenhouse tomato yield and quality. Commun. Soil Sci. Plant Anal. 2009, 40, 485–497. [Google Scholar] [CrossRef]
- Tremblay, N.; Gasia, M.C.; Ferauge, M.T.; Gosselin, A.; Trudel, M.J. Influence of photosynthetic irradiance on nitrate reductase activity, nutrient uptake and partitioning in tomato plants. J. Plant Nutr. 1988, 11, 17–36. [Google Scholar] [CrossRef]
- Hermida, J.J.F.; Toro, M.C.H.; Guzman, M.; Cabrera, R.I. Determining nutrient diagnostic norms for greenhouse roses. HortScience 2013, 48, 1403–1410. [Google Scholar] [CrossRef]
- Noh-Medina, J.; Borges-Gómez, L.; Soria-Fregoso, M. Composición nutrimental de biomasa y tejidos conductores en chile habanero (Capsicum chinense Jacq.). Trop. Subtro. Agroeco. 2010, 12, 219–228. [Google Scholar]
- Contreras, J.I.; Galindo, P.; Catala, J.J.; Segura, M.L. Response of greenhouse pepper crop to fertilizer levels and different qualities of irrigation water. Acta Hortic. 2006, 203–206. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Contreras, J.I.; Segura, M.L.; Teresa Lao, M. Testing foliar nutritional changes in space and over time in greenhouse tomato. J. Plant Nutr. 2019, 42, 333–343. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Pérez-Alonso, J.; Contreras, J.I.; Segura, M.L.; Reca, J.; Lao, M.T. Approach to petiole sap nutritional diagnosis method by empirical model based on climatic and growth parameters. Agronomy 2020, 10, 188. [Google Scholar] [CrossRef]
- Marti, H.R.; Mills, H.A. Calcium uptake and concentration in bell pepper plants as influenced by nitrogen form and stages of development. J. Plant Nutr. 1991, 14, 1177–1185. [Google Scholar] [CrossRef]
- Betancourt, P.; Pierre, F. Extracción de macronutrientes por el cultivo de tomate (Solanum lycopersicum Mill. var. “Alba”) en casas de cultivo en Quíbor, estado Lara. Bioagro 2013, 25, 181–188. [Google Scholar]
- Fernández, M.T. Fósforo: Amigo o enemigo. ICIDCA. Sobre Los Deriv. De La Caña De Azúcar 2007, 41, 51–57. [Google Scholar]
- Lao, M.T. Fertigation Management in the Greenhouses from Almeria by Means of Suction Cups. Ph.D. Thesis, University of Almería, Almería, Spain, 2002. (In Spanish). [Google Scholar]
Norms | Mean | CV (%) | r |
---|---|---|---|
N/P | 13.44 | 23.58 | −0.44 * |
N/K | 1.23 | 41.40 | 0.31 * |
P/K | 0.09 | 41.48 | 0.33 * |
P/Ca | 0.11 | 57.02 | 0.28 * |
Ca/N | 0.84 | 36.28 | 0.32 * |
Ca/K | 1.10 | 68.22 | 0.24 * |
Ca/Mg | 2.37 | 31.05 | −0.27 * |
Mg/N | 0.37 | 35.01 | 0.38 * |
Mg/P | 4.95 | 41.79 | 0.29 * |
Mg/K | 0.47 | 64.41 | 0.28 * |
FL | FT | FD | HV | |||||
---|---|---|---|---|---|---|---|---|
Norms | Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | Mean | CV (%) |
N/P | 17.78 a | 26.44 | 15.29 b | 36.30 | 18.20 a | 30.34 | 13.44 c | 23.58 |
N/K | 1.23 a | 19.22 | 1.21 a | 37.14 | 1.30 a | 33.97 | 1.23 a | 41.40 |
P/K | 0.07 a | 33.51 | 0.09 a | 40.34 | 0.08 a | 53.74 | 0.09 a | 41.48 |
P/Ca | 0.27 a | 44.12 | 0.29 a | 49.13 | 0.17 b | 38.76 | 0.11 c | 57.02 |
Ca/N | 0.26 c | 32.67 | 0.28 c | 34.59 | 0.37 b | 24.85 | 0.84 a | 36.28 |
Ca/K | 0.32 c | 33.82 | 0.33 c | 42.31 | 0.47 b | 36.30 | 1.10 a | 68.22 |
Ca/Mg | 2.14 a | 38.16 | 1.79 b | 32.11 | 2.20 a | 39.53 | 2.37 a | 31.05 |
Mg/N | 0.13 c | 34.15 | 0.16 cb | 31.57 | 0.18 b | 31.57 | 0.37 a | 35.01 |
Mg/P | 2.36 c | 44.90 | 2.49 c | 48.33 | 3.32 b | 45.64 | 4.95 a | 41.79 |
Mg/K | 0.16 c | 35.20 | 0.20 cb | 50.62 | 0.24 b | 55.26 | 0.47 a | 64.41 |
N | P | K | Ca | Mg | |
---|---|---|---|---|---|
DRIS sufficiency | 34–56 | 1.9–4.3 | 30–51 | 12–33 | 4–15 |
Guzmán [21] | 36–37 | 3.2–3.5 | 31–33 | 31–33 | 5.6–6.1 |
Casas and Casas [22] | 33–50 | 3.0–6.0 | 45–55 | 15–35 | 7.5–13 |
Benton et al. [23] | 35–50 | 1.8–7.0 | 30–45 | 10–28 | 2.6–10.1 |
N | P | K | Ca | Mg | ||
---|---|---|---|---|---|---|
FL | DRIS sufficiency | 47–64 | 2.2–4.4 | 38–55 | 8–21 | 4–10 |
Cadahia [10] | 54–67 | 1.5–5.0 | 33–48 | 12–23 | 6–14 | |
Maynard and Hochmuth [24] | 30–50 | 3–5 | 25–50 | 9–15 | 3–5 | |
FT | DRIS sufficiency | 45–53 | 2.5–4.6 | 34–53 | 9–18 | 5–10 |
Cadahia [10] | 50–57 | 2.1–4.0 | 31–50 | 14–24 | 7–11 | |
Maynard and Hochmuth [24] | ||||||
FD | DRIS sufficiency | 41–52 | 1.6–4.1 | 20–57 | 9–25 | 4–13 |
Cadahia [10] | 44–52 | 2–4 | 20–49 | 17–30 | 6–11 | |
Maynard and Hochmuth [24] | 29–40 | 2.5–4.0 | 25–40 | 10–15 | 3–4 | |
HV | DRIS sufficiency | 28–40 | 2.0–3.6 | 17–40 | 20–44 | 7–19 |
Cadahia [10] | 29–37 | 1.6–3.0 | 21–40 | 29–42 | 8–19 | |
Maynard and Hochmuth [24] | 25–30 | 2–4 | 20–30 | 10–15 | 3.0–4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanderal, A.; García-Caparrós, P.; Lao, M.T.; Segura, M.L. DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain. Agronomy 2021, 11, 837. https://doi.org/10.3390/agronomy11050837
Llanderal A, García-Caparrós P, Lao MT, Segura ML. DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain. Agronomy. 2021; 11(5):837. https://doi.org/10.3390/agronomy11050837
Chicago/Turabian StyleLlanderal, Alfonso, Pedro García-Caparrós, María Teresa Lao, and Maria Luz Segura. 2021. "DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain" Agronomy 11, no. 5: 837. https://doi.org/10.3390/agronomy11050837
APA StyleLlanderal, A., García-Caparrós, P., Lao, M. T., & Segura, M. L. (2021). DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain. Agronomy, 11(5), 837. https://doi.org/10.3390/agronomy11050837