Preliminary Results of Effect of Rotational Grazing of Farmed Red Deer (Cervus elaphus) on the Biochemical Status of Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeffery, S.; Gardi, C. Soil biodiversity under threat—A review. Acta Soc. Zool. Bohem. 2010, 74, 7–12. [Google Scholar]
- Akçakaya, H.; Butchart, S.; Watson, J.; Pearson, R. Preventing species extinctions resulting from climate change. Nat. Clim. Chang. 2014, 4, 1048–1049. [Google Scholar] [CrossRef]
- Metera, E.; Sakowski, T.; Sloniewski, K.; Romanowicz, B. Grazing as a tool to maintain biodiversity of grassland—A review. Anim. Sci. Pap. Rep. 2010, 28, 315–334. [Google Scholar]
- Tiainen, J.; Hyvönen, T.; Hagner, M.; Huusela-Veistola, E.; Louhi, P.; Miettinen, A.; Nieminen, T.; Palojärvi, A.; Seimola, T.; Taimisto, P.; et al. Biodiversity in intensive and extensive grasslands in Finland: The impacts of spatial and temporal changes of agricultural land use. Agric. Food Sci. 2020, 29, 68–97. [Google Scholar] [CrossRef]
- Futa, B.; Patkowski, K.; Bielińska, E.J.; Gruszecki, T.M.; Pluta, M.; Kulik, M.; Chmielewski, S. Sheep and horse grazing in a large-scale protection area and its positive impact on chemical and biological soil properties. Pol. J. Soil Sci. 2016, 49, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Ross, L.C.; Austrheim, G.; Asheim, L.J.; Bjarnason, G.; Feilberg, J.; Fosaa, A.M.; Hester, A.J.; Holand, Ø.; Jónsdóttir, I.S.; Mortensen, L.E.; et al. Sheep grazing in the North Atlantic region: A long-term perspective on environmental sustainability. Ambio 2016, 45, 551–566. [Google Scholar] [CrossRef]
- Chabuz, W.; Kulik, M.; Sawicka-Zugaj, W.; Żółkiewski, P.; Warda, M.; Pluta, M.; Lipiec, A.; Bochniak, A.; Zdulski, J. Impact of the type of use of permanent grasslands areas in mountainos regions on the floristic diversity of habitats and animal welfare. Glob. Ecol. Conserv. 2019, 19, e00629. [Google Scholar] [CrossRef]
- Patkowski, K.; Pluta, M.; Lipiec, A.; Greguła-Kania, M.; Gruszecki, T.M. Foraging behavior patterns of Sheep and horses under a mixed species grazing system. J. Appl. Anim. Welf. Sci. 2019, 22, 357–363. [Google Scholar] [CrossRef]
- Hao, Y.; He, Z. Effects of grazing patterns on grassland biomass and soil environments in China: A meta-analysis. PLoS ONE 2019, 14, e0215223. [Google Scholar] [CrossRef] [PubMed]
- Kulik, M.; Warda, M.; Gawryluk, A.; Bochniak, A.; Patkowski, K.; Lipiec, A.; Gruszecki, T.M.; Pluta, M.; Bielińska, E.J.; Futa, B. Grazing of native livestock breeds as a method of grassland protection in Roztocze National Park, Eastern Poland. J. Ecol. Eng. 2020, 21, 61–69. [Google Scholar] [CrossRef]
- Schmitz, A.; Isselstein, J. Effect of grazing system on grassland plant species richness and vegetation characteristics: Comparing horse and cattle grazing. Sustainability 2020, 12, 3300. [Google Scholar] [CrossRef] [Green Version]
- Schieltz, J.M.; Rubenstein, D.I. Evidence based review: Positive versus negative effects of livestock grazing on wildlife. What do we really know? Environ. Res. Lett. 2016, 11, 113003. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef]
- Golluscio, R.A.; Austin, A.T.; Martínez, G.G.C.; González-Polo, M.; Sala, O.E.; Jackson, R.B. Sheep grazing decreases organic carbon and nitrogen pools in the patagonian steppe: Combination of direct and indirect effects. Ecosystems 2009, 12, 686–697. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Poore, A.G.; Ruiz-Colmenero, M.; Letnic, M.; Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 2016, 26, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Bartoš, L.; Šiler, J. Survey of Game Farming in Europe; FAO: Rome, Italy, 1993. [Google Scholar]
- Fletcher, T.J. The domestication and husbandry of deer in tropical regions. Trop. Agric. Assoc. Newsl. 2002, 22, 3–7. [Google Scholar]
- Reinken, G. Deer Farming: A Practical Guide to German Techniques; Farming Press Books: Ipswich, UK, 1990. [Google Scholar]
- Siwik-Ziomek, A.; Lemanowicz, J. The influence of fertilization with phosphorus, sulphate, carbon and nitrogen content on hydrolases activities in soil. Pol. J. Soil Sci. 2016, 49, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2017, 54, 11–19. [Google Scholar] [CrossRef]
- Futa, B.; Oleszczuk, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Kraska, P. Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment. Agronomy 2020, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Dick, R.P. Methods of Soil Enzymology; SSSA Book Series 9; Soil Science Society of America Inc.: Madison, WI, USA, 2011. [Google Scholar]
- Bastida, F.; Zsolnay, A.; Hernández, T.; Garcia, C. Past, Present and future of soil quality indices: A biological perspective. Geoderma 2008, 147, 159–171. [Google Scholar] [CrossRef]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosyst. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Mattiello, S. Welfare issues of modern deer farming. Ital. J. Anim. Sci. 2009, 8, 205–217. [Google Scholar] [CrossRef]
- Falandysz, J.; Szymczyk-Kobrzyńska, K.; Brzostowski, A.; Zalewski, K.; Zasadowski, A. Concentrations of heavy metals in the tissues of red deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit. Contam. 2005, 22, 141–149. [Google Scholar] [CrossRef]
- KOSEWOPAN. Available online: http://kosewopan.pl/pl/hodowla/ (accessed on 22 February 2021).
- The Federation of European Deer Farmers Associations 2021 (FEDFA). Available online: https://www.fedfa.com/en/fedfa-members/#1364 (accessed on 22 February 2021).
- Pawelec, W.; Wereski, S. (Eds.) Bulletin of the National Hydrological and Meteorological Service 2018; Institute of Meteorology and Water Management-National Research Institute: Gdynia, Poland, 2019; Volume 13, p. 202. [Google Scholar]
- Statistics Poland. Environment; Statistics Poland: Warsaw, Poland, 2019.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Report No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Tajchman, K.; Bogdaszewski, M.; Kowalczuk-Vasilev, E. Effects of suplementation with different levels of calcium and phosporus on mineralcontent of first antler, bone, muscle, and liver of farmed fallow deer (Dama dama). Can. J. Anim. Sci. 2020, 100, 17–26. [Google Scholar] [CrossRef]
- International Organization for Standardization. Soil Quality. Sampling; ISO 18400; ISO: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef]
- International Organization for Standardization. Soil Quality. Determination of pH; ISO 10390; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- International Organization for Standardization. Soil Quality—Determination of Nitrate Nitrogen, Ammonium Nitrogen and Total Soluble Nitrogen in Air-Dry Soils Using Calcium Chloride Solution as Extractant; ISO 14255; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- International Organization for Standardization. Soil Quality. Determination of Total Nitrogen Content by Dry Combustion; ISO 13878; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- International Organization for Standardization. Soil Quality. Determination of Organic Carbon by Sulfochromic Oxidation; ISO 14235; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Polish Committee for Standardization. Agrochemical Soil Analisye—Determination of Assimilated Phosphorus Content; PN-R-04023; ISO: Geneva, Switzerland, 1996. [Google Scholar]
- Polish Committee for Standardization. Agrochemical Soil Analisye—Determination of Assimilated Potasium Content; PN-R-04022; ISO: Geneva, Switzerland, 1996. [Google Scholar]
- Polish Committee for Standardization. Agrochemical Soil Analisye—Determination of Assimilated Magnesium Content; PN-R-04020; ISO: Geneva, Switzerland, 1994. [Google Scholar]
- Schinner, F.; Ohlinger, R.; Kandeler, E.; Margesin, R. Methods in Soil Biology; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Franzluebbers, A.J. Soil organic master stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Xin, G.S.; Long, R.J.; Guo, X.S.; Irvine, J.; Ding, L.M.; Ding, L.L.; Shang, Z.H. Blood mineral status of grazing Tibetan sheep in the Northeast of the Qinghai-Tibetan Plateau. Livest. Sci. 2011, 136, 102–107. [Google Scholar] [CrossRef]
- Głowacz, K.; Niżnikowski, R. The effect of animal grazing on vegetation and soil and element cycling in nature. Environ. Sci. Pollut. Res. Int. 2018, 25, 3565–3570. [Google Scholar] [CrossRef] [Green Version]
- Vilela, M.d.O.; Gates, R.S.; Souza, C.F.; Teles, C.G.S., Jr.; Sousa, F.C. Nitrogen transformation stages into ammonia in broiler production: Sources, deposition, transformation, and emission into the environment. DYNA 2020, 87, 221–228. [Google Scholar] [CrossRef]
- Abrahams, P.W.; Steigmajer, J. Soil ingestion by sheep grazing in the metal enriched floodplain soils of Mid Wales. Environ. Geochem. Health 2003, 25, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Ano, A.; Ubochi, C. Neutralization of soil acidity by animal manures: Mechanism of reaction. Afr. J. Biotechnol. 2010, 6, 364–368. Available online: https://www.ajol.info/index.php/ajb/article/view/56212 (accessed on 22 February 2021).
- Liu, N.; Zhang, Y.; Chang, S.; Kan, H.; Lin, L. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of inner mongolia. PLoS ONE 2012, 7, e36434. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Huang, H.Z.; Zhang, Z.N.; Wu, G.L. Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. J. Soil Sci. Plant. Nutr. 2011, 11, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Bielińska, E.J.; Futa, B.; Chmielewski, S.; Patkowski, K.; Gruszecki, T. Quantification of biodiversity related to the active protection of grassland habitats in the eastern Lublin region of Poland based on the activity of soil enzymes. Pol. J. Soil Sci. 2017, 50, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F.S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P.H. Cropping system and rotational grazing effects on soil fertility and enzymatic activity in an integrated organic crop-livestock system. Agronomy 2020, 10, 803. [Google Scholar] [CrossRef]
- Nahm, K. Evaluation of the nitrogen content in poultry manure. Worlds Poult. Sci. J. 2003, 59, 77–88. [Google Scholar] [CrossRef]
- Gay, S.W.; Knowlton, K.F. Ammonia emission and animal agriculture. Biol. Sys. Eng. 2005, 110–442. [Google Scholar]
- Hoogendoorn, C.J.; Betteridge, K.; Ledgard, S.F.; Costall, D.A.; Park, Z.A.; Theobald, P.W. Nitrogen leaching from sheep-, cattle- and deer-grazed pastures in the Lake Taupo catchment in New Zealand. Anim. Prod. Sci. 2011, 51, 416–425. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Mocek-Płóciniak, A. Biochemical and chemical indices of soil transformations on goose farms in years 1996–2011. Arch. Environ. Prot. 2015, 41, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Herold, N.; Schöning, I.; Gutknecht, J.; Alt, F.; Boch, S.; Müller, J.; Oelmann, Y.; Socher, A.S.; Wilcke, W.; Wubet, T.; et al. Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany. Appl. Soil Ecol. 2014, 73, 41–50. [Google Scholar] [CrossRef]
- Qin, Y.; Niu, D.; Kang, J.; Zhou, Y.; Li, X. Effects of livestock exclusion on soil physical and biochemical properties of a desert rangeland. Pol. J. Environ. Stud. 2015, 24, 2587–2595. [Google Scholar] [CrossRef]
- Burke, D.; Weintraub, M.; Hewins, C.; Kalisz, S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 2011, 43, 795–803. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. Soil Biol. 2011, 26, 215–243. [Google Scholar]
- Dick, W.A.; Cheng, L.; Wang, P. Soil acid alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Ingram, L.J.; Stahl, P.D.; Schuman, G.E.; Buyer, J.S.; Vance, G.F.; Ganjegunte, G.K.; Welker, I.M.; Derner, I.D. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 2008, 72, 38. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Bell, C.W.; Morris, B.E.L.; Zak, J.; Allen, V.G. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region. Agric. Ecosyst. Environ. 2010, 137, 231–240. [Google Scholar] [CrossRef]
- Deng, J.; Chong, Y.; Zhang, D.; Ren, C.; Zhao, F.; Zhang, X.; Han, X.; Yang, G. Temporal variations in soil enzyme activities and responses to land-use change in the Loess Plateau. China Appl. Sci. 2019, 9, 3129. [Google Scholar] [CrossRef] [Green Version]
- Zuccarini, P.; Asensio, D.; Ogaya, R.; Sardans, J.; Peñuelas, J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Chang. Biol. 2020, 26, 3698–3714. [Google Scholar] [CrossRef]
- Geisseler, D.; Horwath, W.R.; Joergensen, R.G.; Ludwig, B. Pathways of nitrogen utilization by soil microorganisms—A review. Soil Biol. Biochem. 2010, 42, 2058–2067. [Google Scholar] [CrossRef]
- Samuel, S.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic indicators of soil quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Richardson, C.; Lionberger, J.; Miller, G. White-Tailed Deer Management in the Rolling Plains of Texas; Wildlife Biologists Texas Parks and Wildlife Department: Austin, TX, USA, 2008.
- Santalahti, M.; Sun, H.; Sietiö, O.; Köster, K.; Berninger, F.; Laurila, T.; Pumpanen, J.; Heinonsalo, J. Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland. Appl. Soil Ecol. 2018, 132, 74–82. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Zwydak, M. The relationship between soil properties, enzyme activity and land use. For. Res. Pap. 2017, 78, 39–44. [Google Scholar] [CrossRef] [Green Version]
Pens | Summer (S) | Winter (W) | Sown Pen (SG) |
---|---|---|---|
Area (ha) | 2.7 | 1.3 | 2.8 |
Animal cast (number of animals) | 16 | 8 | 16 |
Period of stay of animals | April–October | November–March | April–October |
Enzymes | EC | Acronym | Substrate Name | Product Name | Unit Name |
---|---|---|---|---|---|
Dehydrogenses | EC 1.1 | ADh | 2,3,5-triphenyl tetrazolium chloride (TTC) | triphenyl formazane (TPF) | mg TPF kg−1 DM 24 h−1 |
Phosphatase | EC 3.1.3 | APh | disodium p-nitrophenyl phosphate | p-nitrophenol (PNP) | mmol PNP kg−1 DM h−1 |
Urease | EC 3.5.1.5 | AU | urea | N-NH4+ | mg N-NH4+ kg−1 DM h−1 |
Plot | Season | pHKCL | TOC | TN | TOC:TN | N-NH4+ | N-NO3− |
---|---|---|---|---|---|---|---|
g·kg−1 | mg·kg−1 | ||||||
S | Spring | 6.88 | 19.37a | 2.24a | 8.7a | 7.08a | 255.1a |
Autumn | 6.54 | 9.83b | 1.15b | 8.6a | 5.83a | 102.8b | |
W | Spring | 6.74 | 16.89a | 1.98a | 8.5a | 6.01a | 619.5a |
Autumn | 6.45 | 18.28b | 2.14a | 8.5a | 1.34b | 172.8b | |
SG | Spring | 7.03 | 14.41a | 1.45a | 9.9a | 2.70a | 522.8a |
Autumn | 6.59 | 9.42b | 1.13a | 8.3b | 4.81b | 178.3b | |
Co | Spring | 6.54 | 15.96a | 1.84a | 8.7a | 3.04a | 617.9a |
Autumn | 6.37 | 10.98b | 1.34b | 8.2b | 5.19b | 214.4b | |
S | Average for season | 6.71 | 14.60a | 1.70a | 8.7a | 6.46a | 178.95a |
W | 6.60 | 17.59b | 2.06b | 8.5a | 3.68b | 396.15b | |
SG | 6.81 | 11.92c | 1.29c | 9.1b | 3.76b | 350.55b | |
Co | 6.41 | 13.47a | 1.59a | 8.4a | 4.12c | 416.15c |
Pens | Season | P | K | Mg |
---|---|---|---|---|
mg·kg−1 | ||||
S | Spring | 210 | 195 | 97 |
Autumn | 136 | 114 | 61 | |
W | Spring | 320 | 553 | 136 |
Autumn | 110 | 220 | 89 | |
SG | Spring | 150 | 267 | 72 |
Autumn | 114 | 201 | 56 | |
Co | Spring | 64 | 55 | 70 |
Autumn | 36 | 42 | 48 | |
S | Average for season | 173 | 155 | 79 |
W | 215 | 387 | 113 | |
SG | 132 | 234 | 64 | |
Co | 50 | 49 | 59 |
Pens | Season | ADh | APh | AU |
---|---|---|---|---|
S | Spring | 17.57a | 235.87a | 16.70a |
Autumn | 7.42b | 98.43b | 15.25a | |
W | Spring | 17.59a | 209.12a | 13.83a |
Autumn | 4.97b | 72.81b | 9.87b | |
SG | Spring | 3.71a | 86.76a | 3.57a |
Autumn | 2.38a | 30.72b | 7.41b | |
Co | Spring | 10.75a | 161.72a | 8.45a |
Autumn | 5.33b | 44.01b | 12.04b | |
S | Average for season | 12.50a | 167.15a | 15.98a |
W | 11.28a | 140.97b | 11.85b | |
SG | 3.05b | 58.74c | 5.49c | |
Co | 8.04c | 102.87d | 10.25b |
Enzymes | TOC | TN | N-NH4+ | P | Mg |
---|---|---|---|---|---|
Dehydrogenases | 0.63 * | 0.68 * | ns | 0,71 * | 0.77 ** |
Phosphatases | 0.72 ** | 0.72 ** | ns | 0.68 * | 0.75 ** |
Urease | ns | ns | 0.75 ** | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Futa, B.; Tajchman, K.; Steiner-Bogdaszewska, Ż.; Drozd, L.; Gruszecki, T.M. Preliminary Results of Effect of Rotational Grazing of Farmed Red Deer (Cervus elaphus) on the Biochemical Status of Soil. Agronomy 2021, 11, 558. https://doi.org/10.3390/agronomy11030558
Futa B, Tajchman K, Steiner-Bogdaszewska Ż, Drozd L, Gruszecki TM. Preliminary Results of Effect of Rotational Grazing of Farmed Red Deer (Cervus elaphus) on the Biochemical Status of Soil. Agronomy. 2021; 11(3):558. https://doi.org/10.3390/agronomy11030558
Chicago/Turabian StyleFuta, Barbara, Katarzyna Tajchman, Żaneta Steiner-Bogdaszewska, Leszek Drozd, and Tomasz M. Gruszecki. 2021. "Preliminary Results of Effect of Rotational Grazing of Farmed Red Deer (Cervus elaphus) on the Biochemical Status of Soil" Agronomy 11, no. 3: 558. https://doi.org/10.3390/agronomy11030558
APA StyleFuta, B., Tajchman, K., Steiner-Bogdaszewska, Ż., Drozd, L., & Gruszecki, T. M. (2021). Preliminary Results of Effect of Rotational Grazing of Farmed Red Deer (Cervus elaphus) on the Biochemical Status of Soil. Agronomy, 11(3), 558. https://doi.org/10.3390/agronomy11030558