Lettuce Production under Mini-PV Modules Arranged in Patterned Designs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Site Location
2.3. Experimental Setup
2.4. Crop Management
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Agronomic Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Urbanization. Available online: https://ourworldindata.org/how-urban-is-the-world (accessed on 4 September 2021).
- United Nations. Worlds Urbanizations Prospects: The 2018 Revisions. Key Factors. Population Division of the UN Department of Economic and Social Affairs. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Methodology.pdf (accessed on 4 September 2021).
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.-J. Urban Sprawl, Food Security and Agricultural Systems in Developing Countries: A Systematic Review of the Literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Herrera-Gomez, S.S.; Quevedo-Nolasco, A.; Pérez-Urrestarazu, L. The Role of Green Roofs in Climate Change Mitigation. A Case Study in Seville (Spain). Build. Environ. 2017, 123, 575–584. [Google Scholar] [CrossRef]
- Canet-Martí, A.; Pineda-Martos, R.; Junge, R.; Bohn, K.; Paço, T.A.; Delgado, C.; Alenčikienė, G.; Skar, S.L.G.; Baganz, G.F.M. Nature-Based Solutions for Agriculture in Circular Cities: Challenges, Gaps, and Opportunities. Water 2021, 13, 2565. [Google Scholar] [CrossRef]
- Pothukuchi, K.; Kaufman, J.L. Placing the Food System on the Urban Agenda: The Role of Municipal Institutions in Food Systems Planning. Agric. Hum. Values 1999, 16, 213–224. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the Production Capacity of Rooftop Gardens (RTGs) in Urban Agriculture: The Potential Impact on Food and Nutrition Security, Biodiversity and Other Ecosystem Services in the City of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Eumorfopoulou, E.; Aravantinos, D. The Contribution of a Planted Roof to the Thermal Protection of Buildings in Greece. Energy Build. 1998, 27, 29–36. [Google Scholar] [CrossRef]
- Loder, A. ‘There’s a Meadow outside my Workplace’: A Phenomenological Exploration of Aesthetics and Green Roofs in Chicago and Toronto. Landsc. Urban Plan. 2014, 126, 94–106. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying Air Pollution Removal by Green Roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green Roof Stormwater Retention. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Surface Heat Budget on Green Roof and High Reflection Roof for Mitigation of Urban Heat Island. Build. Environ. 2007, 42, 2971–2979. [Google Scholar] [CrossRef] [Green Version]
- Alexandri, E.; Jones, P. Temperature Decreases in an Urban Canyon Due to Green Walls and Green Roofs in Diverse Climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Robertson, G.; Cregg, B.M.; Andresen, J.A. Carbon Sequestration Potential of Extensive Green Roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef]
- Rowe, D.B. Green Roofs as a Means of Pollution Abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-Attenuation Values in a Cost-Benefit Analysis of Green Wall a_Ecting Courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3788. [Google Scholar] [CrossRef] [Green Version]
- Snodgrass, E.E.; McIntyre, L. The Green Roof Manual: A Professional Guide to Design, Installation, and Maintenance. Choice Rev. Online 2011, 48, 48–4481. [Google Scholar] [CrossRef]
- Cengiz, M.S.; Mamiş, M.S. Price-Efficiency Relationship for Photovoltaic Systems on a Global Basis. Int. J. Photoenergy 2015, 2015, 256101. [Google Scholar] [CrossRef] [Green Version]
- Jäger-Waldau, A.; Adinolfi, G.; Batlle, A.; Braun, M.; Bucher, C.; Detollenaere, A.; Frederiksen, K.H.B.; Graditi, G.; Lemus, R.G.; Lindahl, J.; et al. Electricity Produced from Photovoltaic Systems in Apartment Buildings and Self-Consumption: Comparison of the Situation in Various IEA PVPS Countries. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1701–1710. [Google Scholar]
- European Commission. PVGIS Project; Joint Research Centre, Institute for Energy and Transport: Ispra, Italy, 2013; Available online: http://re.jrc.ec.europa.eu/pvgis/solres/solrespvgis.htm (accessed on 15 August 2021).
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean Climate: An Overview of the Main Characteristics and Issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar]
- Paço, T.A.; De Carvalho, R.C.; Arsénio, P.; Martins, D. Green Roof Design Techniques to Improve Water Use under Mediterranean Conditions. Urban Sci. 2019, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Brudermann, T.; Reinsberger, K.; Orthofer, A.; Kislinger, M.; Posch, A. Photovoltaics in Agriculture: A Case Study on Decision Making of Farmers. Energy Policy 2013, 61, 96–103. [Google Scholar] [CrossRef]
- Mekhilef, S.; Faramarzi, S.Z.; Saidur, R.; Salam, Z. The Application of Solar Technologies for Sustainable Development of Agri-cultural Sector. Renew. Sustain. Energy Rev. 2013, 18, 583–594. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under Agrivoltaic Systems: Is Crop Growth Rate Affected in the Partial Shade of Solar Panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2015, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Yano, A.; Cossu, M. Energy Sustainable Greenhouse Crop Cultivation Using Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2019, 109, 116–137. [Google Scholar] [CrossRef]
- Ureña-Sánchez, R.; Callejon-Ferre, A.J.; Pérez-Alonso, J.; Ortega, A.C. Greenhouse Tomato Production with Electricity Generation by Roof-Mounted Flexible Solar Panels. Sci. Agricola 2012, 69, 233–239. [Google Scholar] [CrossRef]
- Marucci, A.; Monarca, D.; Cecchini, M.; Colantoni, A.; Manzo, A.; Cappuccini, A. The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology. Math. Probl. Eng. 2012, 2012, 451934. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar Radiation Distribution inside a Greenhouse with South-Oriented Photovoltaic Roofs and Effects on Crop Productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Fatnassi, H.; Poncet, C.; Bazzano, M.M.; Brun, R.; Bertin, N. A Numerical Simulation of the Photovoltaic Greenhouse Microclimate. Sol. Energy 2015, 120, 575–584. [Google Scholar] [CrossRef]
- Carreño-Ortega, A.; Galdeano-Gómez, E.; Pérez-Mesa, J.C.; Galera-Quiles, M.D.C. Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect? Energies 2017, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Cossu, M.; Cossu, A.; Deligios, P.A.; Ledda, L.; Li, Z.; Fatnassi, H.; Poncet, C.; Yano, A. Assessment and Comparison of the Solar Radiation Distribution inside the Main Commercial Photovoltaic Greenhouse Types in Europe. Renew. Sustain. Energy Rev. 2018, 94, 822–834. [Google Scholar] [CrossRef]
- Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S. Shading and Electrical Features of a Photovoltaic Array Mounted Inside the Roof of an East-West Oriented Greenhouse. Biosyst. Eng. 2010, 106, 367–377. [Google Scholar] [CrossRef]
- Peretz, M.F.; Geoola, F.; Yehia, I.; Ozer, S.; Levi, A.; Magadley, E.; Brikman, R.; Rosenfeld, L.; Levy, A.; Kacira, M.; et al. Testing Organic Photovoltaic Modules for Application as Greenhouse Cover or Shading Element. Biosyst. Eng. 2019, 184, 24–36. [Google Scholar] [CrossRef]
- Moretti, S.; Marucci, A. A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production. Energies 2019, 12, 2589. [Google Scholar] [CrossRef] [Green Version]
- López-Díaz, G.; Carreño-Ortega, A.; Fatnassi, H.; Poncet, C.; Díaz-Pérez, M. The Effect of Different Levels of Shading in a Photovoltaic Greenhouse with a North–South Orientation. Appl. Sci. 2020, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Cola, G.; Ferrante, A.; Mariani, L.; Martinetti, L. Micrometeorological Environment in Traditional and Photovoltaic Greenhouses and Effects on Growth and Quality of Tomato (Solanum lycopersicum L). Ital. J. Agrometeorol. 2015, 1054, 27–38. [Google Scholar] [CrossRef]
- Bertin, N.; Fatnassi, H.; Vercambre, G.; Poncet, C. Simulation of Tomato Production under Photovoltaic Greenhouses. Acta Hortic. 2017, 1170, 425–432. [Google Scholar] [CrossRef]
- Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á.J.; Velázquez-Martí, B. Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability 2018, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Ezzaeri, K.; Fatnassi, H.; Wifaya, A.; Bazgaou, A.; Aharoune, A.; Poncet, C.; Bekkaoui, A.; Bouirden, L. Performance of Photovoltaic Canarian Greenhouse: A Comparison Study between Summer and Winter Seasons. Sol. Energy 2020, 198, 275–282. [Google Scholar] [CrossRef]
- Ezzaeri, K.; Fatnassi, H.; Bouharroud, R.; Gourdo, L.; Bazgaou, A.; Wifaya, A.; Demrati, H.; Bekkaoui, A.; Aharoune, A.; Poncet, C.; et al. The Effect of Photovoltaic Panels on the Microclimate and on the Tomato Production under Photovoltaic Canarian Greenhouses. Sol. Energy 2018, 173, 1126–1134. [Google Scholar] [CrossRef]
- Bousselot, J. Rooftop Agrivoltaics, University of Colorado State, Ted Talks. 2020. Available online: https://www.youtube.com/watch?v=pobj34HuHO8 (accessed on 2 August 2021).
- Appolloni, E.; Orsini, F.; Specht, K.; Thomaier, S.; Sanyé-Mengual, E.; Pennisi, G.; Gianquinto, G. The Global Rise of urban Rooftop Agriculture: A Review of Worldwide Cases. J. Clean. Prod. 2021, 296, 126556. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley&Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Perna, A.; Grubbs, E.K.; Agrawal, R.; Bermel, P. Design Considerations for Agrophotovoltaic Systems: Maintaining PV Area with Increased Crop Yield. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 0668–0672. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and Radiation use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Martínez-Nicolás, M.; Robles-Martínez, M.L.; Pliego-Marín, L.; Aragón-Robles, E.; Heinrich, L.; Lopez-Baltazar, J. Efecto Del Sombreado Sobre El Crecimiento, Rendimiento Y Contenido De Clorofila En Plantas De Lechuga Hidropónica. In Proceedings of the XV Congreso Internacional En Ciencias Hortícolas, Mexicali, Baja California, Mexico, 25–26 October 2012; p. 276. [Google Scholar]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Cometti, N.N.; da Silva, J.V.; Zonta, E.; Cessa, R.M. Evaluation of Photosynthetic Photon Flux in Lettuce Cultivation at Different Shading Levels. Hortic. Bras. 2020, 38, 65–70. [Google Scholar] [CrossRef]
- Carini, F.; Filho, A.C.; Kleinpaul, J.A.; Neu, I.M.M.; Silveira, D.L.; Pacheco, M.; Andriolo, J.L. Agronomic Performance of Lettuce Cultivars in Different Seasons and Shading Conditions. Idesia 2020, 38, 47–58. [Google Scholar] [CrossRef]
- Jahanfar, A.; Drake, J.; Sleep, B.; Margolis, L. Evaluating the Shading Effect of Photovoltaic Panels on Green Roof Discharge Reduction and Plant Growth. J. Hydrol. 2018, 568, 919–928. [Google Scholar] [CrossRef]
- Casierra-Posada, F. Photoinhibition: Physiological Response of Plants to High-Irradiance Stress. A Review. Rev. Colomb. Cienc. Hort. 2011, 1, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Seginer, I.; Shina, G.; Albright, L.D.; Marsh, L.S. Optimal Temperature Setpoints for Greenhouse Lettuce. J. Agric. Eng. Res. 1991, 49, 209–226. [Google Scholar] [CrossRef]
- Fujii, R.; Yamano, N.; Hashimoto, H.; Misawa, N.; Ifuku, K. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin. Plant Cell Physiol. 2015, 57, pcv187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemisana, D.; Lamnatou, C. Photovoltaic-Green Roofs: An Experimental Evaluation of System Performance. Appl. Energy 2014, 119, 246–256. [Google Scholar] [CrossRef]
- Alshayeb, M.J.; Chang, J.D. Variations of PV Panel Performance Installed over a Vegetated Roof and a Conventional Black Roof. Energies 2018, 11, 1110. [Google Scholar] [CrossRef] [Green Version]
- Bilčík, M.; Božiková, M.; Čimo, J. Influence of Roof Installation of PV Modules on the Microclimate Conditions of Cattle Breeding Objects. Appl. Sci. 2021, 11, 2140. [Google Scholar] [CrossRef]
Fresh Weight (g) | Dry Matter (%) | Number of Leaves (n) | Maximum Length (cm) | Root Dry Matter (g) | |
---|---|---|---|---|---|
A: season | |||||
Spring | 111.0a | 9.3b | 40.2a | 18.3a | 8.9a |
Summer | 82.9b | 9.6a | 35.1b | 14.9b | 5.1b |
p-value | 0 | 0.0444 | 0 | 0 | 0 |
B: treatment | |||||
CS | 85.8b | 9.5b | 35.0b | 15.4b | 5.3b |
SS | 130.9a | 8.1c | 44.2a | 19.9a | 8.1c |
FS | 74.1c | 10.6a | 33.9b | 14.3b | 4.6a |
p-value | 0 | 0 | 0 | 0 | 0 |
Interactions | |||||
AB | 0.5995 | 0.0315 | 0.2337 | 0.8405 | 0.5071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreño-Ortega, A.; do Paço, T.A.; Díaz-Pérez, M.; Gómez-Galán, M. Lettuce Production under Mini-PV Modules Arranged in Patterned Designs. Agronomy 2021, 11, 2554. https://doi.org/10.3390/agronomy11122554
Carreño-Ortega A, do Paço TA, Díaz-Pérez M, Gómez-Galán M. Lettuce Production under Mini-PV Modules Arranged in Patterned Designs. Agronomy. 2021; 11(12):2554. https://doi.org/10.3390/agronomy11122554
Chicago/Turabian StyleCarreño-Ortega, Angel, Teresa A. do Paço, Manuel Díaz-Pérez, and Marta Gómez-Galán. 2021. "Lettuce Production under Mini-PV Modules Arranged in Patterned Designs" Agronomy 11, no. 12: 2554. https://doi.org/10.3390/agronomy11122554
APA StyleCarreño-Ortega, A., do Paço, T. A., Díaz-Pérez, M., & Gómez-Galán, M. (2021). Lettuce Production under Mini-PV Modules Arranged in Patterned Designs. Agronomy, 11(12), 2554. https://doi.org/10.3390/agronomy11122554