A Variable Rate Drip Irrigation Prototype for Precision Irrigation
Abstract
:1. Introduction
1.1. Background
1.2. Methodology
1.3. VRDI Emitter Design
1.4. VRDI Emitter Cost
1.5. Experimental Design
2. Result and Discussion
2.1. Flow Rate Measurements
2.2. Total Volume Applied
3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tindula, G.N.; Orang, M.N.; Snyder, R.L. Survey of irrigation methods in California in 2010. J. Irrig. Drain. Eng. 2013, 139, 233–238. [Google Scholar] [CrossRef]
- van der Kooij, S.; Zwarteveen, M.; Boesveld, H.; Kuper, M. The efficiency of drip irrigation unpacked. Agric. Water Manag. 2013, 123, 103–110. [Google Scholar] [CrossRef]
- Chitra, R.; Havaraddi, R.M.; Subramanian, S.; Suresh, J. Effect of scheduling of drip irrigation on growth, yield and water use efficiency of turmeric (Curcuma longa L.) var. CO2. J. Spices Aromat. Crop. 2017, 26, 8–15. [Google Scholar] [CrossRef]
- Ayars, J.E.; Fulton, A.; Taylor, B. Subsurface drip irrigation in California—Here to stay? Agric. Water Manag. 2015, 157, 39–47. [Google Scholar] [CrossRef]
- Al-Agele, H.A.; Nackley, L.; Higgins, C.W. A pathway for sustainable agriculture. Sustainability 2021, 13, 4328. [Google Scholar] [CrossRef]
- Al-agele, H.A.; Mahapatra, D.M.; Prestwich, C.; Higgins, C.W. Dynamic Adjustment of Center Pivot Nozzle Height: An Evaluation of Center Pivot Water Application Pattern and the Coefficient of Uniformity. Appl. Eng. Agric. 2020, 36, 647–656. [Google Scholar] [CrossRef]
- Chapin, R.D. Drip Irrigation System. Google Patents (US4626130A*), 2 December 1986. [Google Scholar]
- Perry, C.; Dukes, M.; Harrison, K. Effects of variable-rate sprinkler cycling on irrigation uniformity. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar]
- Higgins, C.W.; Kelley, J.; Barr, C.; Hillyer, C. Determining the minimum management scale of a commercial variable-rate irrigation system. Trans. ASABE 2016, 59, 1671–1680. [Google Scholar]
- Rodriguez, S.A.B.; Hamann, H.F.; Klein, L.; Schappert, M.A. Segmented variable rate drip irrigation. Google Patents (US20160165817A1), 30 January 2018. [Google Scholar]
- Sanchez, L.A.; Sams, B.; Alsina, M.M.; Hinds, N.; Klein, L.J.; Dokoozlian, N. Improving vineyard water use efficiency and yield with variable rate irrigation in California. Adv. Anim. Biosci. 2017, 8, 574–577. [Google Scholar] [CrossRef]
- Shilpa, A. Smart Drip Irrigation System. Int. J. Trend Sci. Res. Dev. 2018, 2, 1560–1565. [Google Scholar]
- McCauley, D.M.; Nackley, L.L.; Kelley, J. Demonstration of a low-cost and open-source platform for on-farm monitoring and decision support. Comput. Electron. Agric. 2021, 187, 106284. [Google Scholar] [CrossRef]
- Parameswaran, G.; Sivaprasath, K. Arduino based smart drip irrigation system using Internet of Things. Int. J. Eng. Sci. 2016, 5518. [Google Scholar] [CrossRef]
- Al-agele, H.A.A.; Nackley, L.; Higgins, C. Testing Novel New Drip Emitter with Variable Diameters for a Variable Rate Drip Irrigation. Agriculture 2021, 11, 87. [Google Scholar] [CrossRef]
- Horne, D.; Jashami, H.; Hurwitz, D.S. Evaluation of low noise transverse rumble strips in proximity to a stop controlled intersection. Transp. Eng. 2020, 2, 100032. [Google Scholar] [CrossRef]
- Jashami, H.; Hurwitz, D.S.; Monsere, C.; Kothuri, S. Evaluation of driver comprehension and visual attention of the flashing yellow arrow display for permissive right turns. Transp. Res. Rec. 2019, 2673, 397–407. [Google Scholar] [CrossRef]
- Copeland, P. Managing Vineyard Variability with Variable Rate Irrigation: A Proof-of-Concept Prototype for Perennial Crops. Brent Sams E.&J. Gallo Winery Viticulture IBM. 2015. Available online: https://slideplayer.com/slide/11289977/ (accessed on 15 November 2021).
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
Components | Cost ($) | Source | Other Technical Details |
---|---|---|---|
Microcontroller, DCCDuino Nano | $2 | Arduino Manufacturer | 3V |
Voltage amplifier (or regulator), STP16NF06 N MOSFET | $1 | Newark An Avnet Company | 60V, 16A, GDS |
Control valve with solenoid | $3 | DC12V G 1/4″ Electric Solenoid Valve N/C Feed for RO Water Air Q HongQin Water purification Equipment Factory | DC12V G 1/4″ Electric Solenoid Valve N/C Feed for RO Water Air Quick Connector |
3D printing | $1 | ||
Wire | $2 | ||
TOTAL | $9 |
Design (Diameter) | Time (Min) | Water Volume (cm3) | Pressure (kPa) | |||||
---|---|---|---|---|---|---|---|---|
14 | 28 | 41 | 55 | 69 | 83 | |||
VRDI Emitter (0.30 cm) | 10 | Mean | 14.34 | 21.13 | 28.68 | 31.70 | 33.21 | 38.12 |
SD | 0.38 | 1.51 | 2.26 | 1.51 | 1.51 | 0.38 | ||
20 | Mean | 18.11 | 24.15 | 55.85 | 55.10 | 64.16 | 73.97 | |
SD | 1.51 | 1.51 | 2.26 | 1.51 | 2.26 | 4.53 | ||
30 | Mean | 22.64 | 36.98 | 100.38 | 80.76 | 95.86 | 110.20 | |
SD | 0.38 | 1.51 | 2.26 | 3.02 | 1.51 | 0.75 | ||
60 | Mean | 61.89 | 72.46 | 150.95 | 150.95 | 197.75 | 220.39 | |
SD | 1.51 | 1.51 | 7.55 | 7.55 | 1.51 | 1.51 | ||
VRDI Emitter (0.35 cm) | 10 | Mean | 16.60 | 13.59 | 23.78 | 28.68 | 33.96 | 42.27 |
SD | 1.51 | 1.51 | 0.38 | 2.26 | 2.26 | 2.26 | ||
20 | Mean | 25.16 | 29.44 | 46.04 | 53.59 | 68.68 | 78.50 | |
SD | 1.57 | 3.77 | 0.75 | 1.51 | 1.51 | 2.26 | ||
30 | Mean | 36.23 | 42.27 | 66.42 | 83.40 | 101.14 | 120.01 | |
SD | 2.26 | 2.26 | 2.26 | 0.38 | 2.26 | 0.75 | ||
60 | Mean | 69.44 | 85.29 | 130.57 | 160.01 | 207.56 | 226.43 | |
SD | 1.51 | 2.26 | 2.26 | 1.51 | 2.26 | 7.55 | ||
Conventional | 10 | Mean | 151.71 | 225.68 | 245.30 | 306.44 | 347.19 | 380.40 |
SD | 0.75 | 3.02 | 1.51 | 2.26 | 7.55 | 3.02 | ||
20 | Mean | 250.58 | 364.18 | 490.60 | 599.29 | 689.86 | 781.94 | |
SD | 1.51 | 1.13 | 3.77 | 3.02 | 3.02 | 2.26 | ||
30 | Mean | 358.51 | 484.18 | 766.84 | 988.75 | 993.27 | 1114.54 | |
SD | 3.77 | 1.13 | 2.26 | 7.55 | 4.53 | 4.61 | ||
60 | Mean | 730.62 | 952.52 | 1491.42 | 1725.40 | 1960.89 | 2339.40 | |
SD | 1.51 | 1.51 | 4.53 | 4.53 | 6.04 | 0.38 |
Source of Variance | df | MS | F | P |
---|---|---|---|---|
Design (0.30 cm VRDI, 0.35 cm VRDI, and Conventional) | 2 | 18,564 | 2014.54 | <0.001 * |
Pressure (14, 28, 41, 55, 69, 83) | 5 | 226.30 | 24.56 | <0.001 * |
Time (10, 20, 30, 60) min | 3 | 1455.40 | 157.94 | <0.001 * |
Design × Pressure | 10 | 5715.70 | 620.26 | <0.001 * |
Design × Time | 6 | 53,204.40 | 5773.67 | <0.001 * |
Pressure × Time | 15 | 1788 | 194.03 | <0.001 * |
Design × Pressure × Time | 30 | 42,034.70 | 4561.55 | <0.001 * |
Error | 144 | 9.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-agele, H.A.; Jashami, H.; Nackley, L.; Higgins, C. A Variable Rate Drip Irrigation Prototype for Precision Irrigation. Agronomy 2021, 11, 2493. https://doi.org/10.3390/agronomy11122493
AL-agele HA, Jashami H, Nackley L, Higgins C. A Variable Rate Drip Irrigation Prototype for Precision Irrigation. Agronomy. 2021; 11(12):2493. https://doi.org/10.3390/agronomy11122493
Chicago/Turabian StyleAL-agele, Hadi A., Hisham Jashami, Lloyd Nackley, and Chad Higgins. 2021. "A Variable Rate Drip Irrigation Prototype for Precision Irrigation" Agronomy 11, no. 12: 2493. https://doi.org/10.3390/agronomy11122493