Variability and Trait Association Studies for Late Leaf Spot Resistance in a Groundnut MAGIC Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Screening for LLS Resistance Using Detached Leaf Assay in Light Chamber
2.3. Screening for LLS Resistance in Field Disease Screening Nursery
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faostat. Food and Agriculture Organization of the United Nations-Statistic Division. Available online: https://www.fao.org/faostat/en/#data (accessed on 1 August 2021).
- U.S. Department of Agriculture. Food Data Central. Available online: Fdc.nal.usda.gov (accessed on 1 August 2021).
- Singh, M.P.; Erickson, J.E.; Boote, K.J.; Tillman, B.L.; Jones, J.W.; Van Bruggen, A.H. Late Leaf Spot Effects on Growth, Photosynthesis, and Yield in Peanut Cultivars of Differing Resistance. Agron. J. 2011, 103, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, P.; Williams, J.H.; McDonald, D.; Gibbons, R.W. The influence of foliar diseases and their control by selective fungicides on a range of groundnut (Arachis hypogaea L.) genotypes. Ann. Appl. Biol. 1984, 104, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Ashish, J.; Nadaf, H.L.; Gangadhara, K. Genetic analysis of rust and late leaf spot in advanced generation recombinant in-bred lines of groundnut (Arachis hypogaea L.). Int. J. Genet. Eng. Biotechnol. 2014, 2, 109–114. [Google Scholar]
- Singh, A.K.; Dwivedi, S.L.; Pande, S.; Moss, J.P.; Nigam, S.N.; Sastri, D.C. Registration of rust and late leaf spot resistant peanut germplasm lines. Crop. Sci. 2003, 43, 440–441. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, P.; Ghanekar, A.M.; Nolt, B.L.; Reddy, D.V.R.; McDonald, D. Resistance to groundnut diseases in wild Arachis species. In Proceedings of the International Workshop on Cytogenetics of Arachis; Moss, J.P., Ed.; ICRISAT: Patancheru, India, 1985; pp. 49–55. [Google Scholar]
- Gowda, M.V.C.; Motagi, B.N.; Naidu, G.K.; Diddimani, S.B.; Sheshagiri, R. GPBD 4: A spanish bunch groundnut genotype resistant to rust and late leaf spot. Int. Arachis Newsl. 2002, 29–32. [Google Scholar]
- Motagi, B.N.; Naidu, G.K.; Angadi, C.C.; Gowda, M.V.C. Potential genotypes for resistance to foliar diseases and productivity in groundnut (Arachis hypogaea L.). Karnataka J. Agric. Sci. 2014, 27, 445–448. [Google Scholar]
- Pasupuleti, J.; Pandey, M.K.; Manohar, S.S.; Variath, M.T.; Nallathambi, P.; Nadaf, H.L.; Sudini, H.; Varshney, R.K. Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea L.) record higher pod and haulm yield in multilocation testing. Plant Breed. 2016, 135, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Gangurde, S.S.; Wang, H.; Yaduru, S.; Pandey, M.K.; Fountain, J.C.; Chu, Y.; Isleib, T.; Holbrook, C.C.; Xavier, A.; Culbreath, A.K.; et al. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol. J. 2019, 18, 1457–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannemann, W.; Lisker, A.; Maurer, A.; Léon, J.; Kazman, E.; Cöster, H.; Holzapfel, J.; Kempf, H.; Korzun, V.; Ebmeyer, E.; et al. Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genom. 2018, 19, 559. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, G.N.; Jenkins, J.N.; Mccarty, J.C.; Zeng, L.; Campbell, B.T.; Delhom, C.D.; Islam, M.S.; Li, P.; Jones, D.C.; Condon, B.D.; et al. Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2019, 132, 989–999. [Google Scholar] [CrossRef]
- Huynh, B.L.; Ehlers, J.D.; Huang, B.E.; Muñoz-Amatriaín, M.; Lonardi, S.; Santos, J.R.; Ndeve, A.; Batieno, B.J.; Boukar, O.; Cisse, N.; et al. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J. 2018, 93, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.L.; Mahan, A.L.; Murray, S.C.; Klein, P.E. Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. Plant Genome 2018, 11, 170102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Hu, G.; Liu, H.; Liang, F.; Yang, L.; Zhao, H.; Zhang, Q.; Li, Z.; Zhang, Q.; Xing, Y. Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor. Appl. Genet. 2020, 133, 59–71. [Google Scholar] [CrossRef]
- Ongom, P.O.; Ejeta, G. Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) pop-ulation of sorghum (Sorghum bicolor (L.) Moench). G3 Genes Genomes Genet. 2018, 8, 331–341. [Google Scholar]
- Scott, M.F.; Ladejobi, O.; Amer, S.; Bentley, A.R.; Biernaskie, J.; Boden, S.A.; Clark, M.; Dell’Acqua, M.; Dixon, L.E.; Filippi, C.V.; et al. Multi-parent populations in crops: A toolbox integrating genomics and genetic mapping with breeding. Heredity 2020, 125, 396–416. [Google Scholar] [CrossRef] [PubMed]
- Bandillo, N.; Raghavan, C.; Muyco, P.A.; Sevilla, M.A.L.; Lobina, I.T.; Dilla-Ermita, C.J.; Tung, C.W.; McCouch, S.; Thomson, M.; Mauleon, R.; et al. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding. Rice 2013, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce, K.S.; Ye, G.; Zhao, X. QTL Identification for Cooking and Eating Quality in indica Rice Using Multi-Parent Advanced Generation Intercross (MAGIC) Population. Front. Plant Sci. 2018, 9, 868. [Google Scholar] [CrossRef]
- Pande, S.; Upadhyaya, H.D.; Rao, J.N.; Reddy, P.L.; Rao, P.P. Promotion of Integrated Disease Management of ICGV 91114, A Dual-Purpose, Early Maturing Groundnut Variety for Rainfed. Information Bulletin No, 68; International Crops Research Institute for Semi-Arid Tropics: Patancheru, India, 2005. [Google Scholar]
- Janila, P.; Nigam, S.N.; Abhishek, R.; Kumar, V.A.; Manohar, S.S.; Venuprasad, R. Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters. J. Agric. Sci. 2015, 153, 975–994. [Google Scholar] [CrossRef]
- Zambcttakis, C.; Wdiyar, F.; BockclCe-Morvan, A.; de Pins, O. Results of four years of research on resistance of groundnut varieties to Aspergillus flavus. RCsultats de quatre anntes de recherches sur la resistance de variktks d’arachide B I’Asper-gillus flavus. (In En. and Fr.). Olkagineux 1981, 36, 377–385. [Google Scholar]
- Khedikar, Y.P.; Gowda, M.V.C.; Sarvamangala, C.; Patgar, K.V.; Upadhyaya, H.D.; Varshney, R.K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 2010, 121, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Janila, P.; Manohar, S.S.; Patne, N.; Variath, M.T.; Nigam, S.N. Genotype × Environment Interactions for Oil Content in Peanut and Stable High-Oil-Yielding Sources. Crop. Sci. 2016, 56, 2506–2515. [Google Scholar] [CrossRef]
- Rao, M.J.V.; Upadhyaya, H.D.; Mehan, V.K.; Nigam, S.N.; McDonald, D.; Reddy, N.S. Registration of Peanut Germplasm ICGV 88145 and ICGV 89104 Resistant to Seed Infection by Aspergillus Flavus. Crop. Sci. 1995, 35, 1717. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, J.; Ramaiah, V.; Rathore, A.; Rupakula, A.; Reddy, R.K.; Waliyar, F.; Nigam, S.N. Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica 2013, 193, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.J.; Wynne, J.C.; Beute, M.K. Evaluation of Detached Leaf Culture for Screening Peanuts for Leafspot Resistance1. Peanut Sci. 1980, 7, 98–100. [Google Scholar] [CrossRef]
- Subrahmanyam, P.; McDonald, D.; Waliyar, F.; Reddy, L.J.; Nigam, S.N.; Gibbons, R.W.; Rao, V.R.; Singh, A.K.; Pande, S.; Reddy, P.M.; et al. Screening Methods and Sources of Resistance to Rust and Late Leaf Spot of Groundnut. Information Bulletin no. 47; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1995. [Google Scholar]
- Shaner, G.; Finney, R.E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 1977, 67, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.G.; Cullis, B.R.; Gilmour, A.R.; Thompson, R. ASReml Version 4; Technical Report; University of Wollongong: Wollongong, Australia, 2018. [Google Scholar]
- Cullis, B.R.; Smith, A.B.; Coombes, N.E. On the design of early generation variety trials with correlated data. J. Agric. Biol. Environ. Stat. 2006, 11, 381–393. [Google Scholar] [CrossRef]
- Bera, S.K.; Vinodkumar, S.G.; Rathnakumar, A.L.; Radhakrishnan, T. NRCGCS-85 (INGR 10030)-Multiple Disease Resistant Spanish Bunch Peanut Genotype (resistant to PBND, stem rot, late leaf spot, early leaf spot, alternaria leaf blight and tolerant to rust). Indian J. Plant Genet. Resour. 2010, 24, 111. [Google Scholar]
- Vishnuvardhan, K.M.; Vasanthi, R.P.; Reddy, K.; Reddy, B.V. Genetic variability studies for yield attributes and resistance to foliar diseases in groundnut (Arachis hypogaea L.). Int. J. Appl. Biol. Pharm. Technol. 2012, 3, 390–394. [Google Scholar]
- Wambi, W.; Tukamuhabwa, P.; Tirumalaraju, S.V.; Okello, D.K.; Deom, C.M.; Bravo-Ureta, B.E.; Puppala, N. Genetic varia-bility studies of Valencia groundnut varieties for late leaf spot (Phaeoisariopsis personata) resistance. Afr. J. Plant Sci. 2015, 9, 327–333. [Google Scholar]
- Zongo, A.; Nana, A.T.; Sawadogo, M.; Konate, A.K.; Sankara, P.; Ntare, B.R.; Desmae, H. Variability and Correlations among Groundnut Populations for Early Leaf Spot, Pod Yield, and Agronomic Traits. Agronomy 2017, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Denwar, N.N.; Simpson, C.E.; Starr, J.L.; Wheeler, T.A.; Burow, M.D. Evaluation and Selection of Interspecific Lines of Groundnut (Arachis hypogaea L.) for Resistance to Leaf Spot Disease and for Yield Improvement. Plants 2021, 10, 873. [Google Scholar] [CrossRef] [PubMed]
- Padmaja, D.; Eswari, B.K.; Rao, V.B.; Reddy, S.M. Genetic relationship of yield attributing traits and late leaf spot tolerance with pod yield in BC1F2 population of (JL 24 X ICG 11337) X JL 24 of groundnut. Int. J. Innov. Res. Dev. 2013, 2, 9. [Google Scholar]
- Dolma, T.; Sekhar, M.R.; Reddy, K.R. Genetic variability, correlation and path analysis for yield, its components and late leaf spot resistance in groundnut (Arachis hypogaea). J. Oilseeds Res. 2010, 27, 154–157. [Google Scholar]
- Fukui, R.; Fukui, H.; McElhaney, R.; Nelson, S.C.; Alvarez, A.M. Relationship between Symptom Development and Actual Sites of Infection in Leaves of Anthurium Inoculated with a Bioluminescent Strain of Xanthomonas campestris pv. dieffenbachiae. Appl. Environ. Microbiol. 1996, 62, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, D.B.; Marathi, B.; Sudini, H.K.; Variath, M.T.; Chaudhari, S.; Manohar, S.S.; Rani, C.V.D.; Pandey, M.K.; Pasupuleti, J. Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Front. Genet. 2020, 11, 514. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Pande, S.; Rao, J.N.; Nigam, S.N. Components of resistance to late leaf spot and rust among interspecific de-rivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica 2002, 125, 81–88. [Google Scholar] [CrossRef]
- Pariaud, B.; Ravigné, V.; Halkett, F.; Goyeau, H.; Carlier, J.; Lannou, C. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol. 2009, 58, 409–424. [Google Scholar] [CrossRef]
- Frenkel, O.; Brewer, M.T.; Milgroom, M.G. Variation in pathogenicity and aggressiveness of Erysiphe necator from different Vitis spp. and geographic origins in the eastern United States. Phytopathology 2010, 100, 1185–1193. [Google Scholar] [CrossRef] [Green Version]
- Milus, E.A.; Seyran, E.; McNew, R. Aggressiveness of Puccinia striiformis f. sp. tritici Isolates in the South-Central United States. Plant Dis. 2006, 90, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Cowling, W.A.; Gilchrist, D.G. Influence of the pathogen on disease severity in Stemphylium leafspot of alfalfa in California. Phytopathology 1980, 70, 1148–1153. [Google Scholar] [CrossRef]
- Bhat, R.S.; Gowda, M.V.C.; Khader, K.M.A. Early generation selection for late leaf spot resistance and productivity in groundnut (Arachis hypogaea L). Indian J. Agric. Sci. 1996, 56, 352–356. [Google Scholar]
- Madden, L.V.; Paul, P.A. Meta-Analysis for Evidence Synthesis in Plant Pathology: An Overview. Phytopathology 2011, 101, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Sakr, N. Intra- and inter-species variability of the aggressiveness in four Fusarium head blight species on durum wheat plants detected in an in vitro Petri-dish assay. Arch. Phytopathol. Plant Prot. 2018, 51, 814–823. [Google Scholar] [CrossRef]
- Cantonwine, E.G.; Culbreath, A.K.; Holbrook, C.C.; Gorbet, D.W. Disease Progress of Early Leaf Spot and Components of Resistance to Cercospora arachidicola and Cercosporidium personatum in Runner-Type Peanut Cultivars. Peanut Sci. 2008, 35, 1–10. [Google Scholar] [CrossRef]
- Chiteka, Z.A.; Gorbet, D.W.; Shokes, F.M.; Kucharek, T.A.; Knauft, D.A. Components of Resistance to Late Leafspot in Peanut. I. Levels and Variability—Implications for Selection1. Peanut Sci. 1988, 15, 25–30. [Google Scholar] [CrossRef]
- Sujay, V.; Gowda, M.V.C.; Pandey, M.K.; Bhat, R.S.; Khedikar, Y.P.; Nadaf, H.L.; Gautami, B.; Sarvamangala, C.; Lingaraju, S.; Radhakrishan, T.; et al. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol. Breed. 2011, 30, 773–788. [Google Scholar] [CrossRef] [Green Version]
Sr. No | List of Parents | Pedigree | Traits | Source of Origin |
---|---|---|---|---|
Parents | ||||
1 | ICGV 91114 | ICGV 86055 × ICGV 86533 | Water-deficit tolerant, early maturing (90–95 days) [21], susceptible to LLS and rust [10] | ICRISAT |
2 | ICGV 06040 | (ICGV 92069 × ICGV 93184) × (NC Ac 343 × ICGV 86187) | High Fe and Zn Content (56 mg/kg Fe and 80 mg/kg Zn) [22] | ICRISAT |
3 | 55-437 | Unknown: ancient selection (1955) | Water-deficit and heat stress tolerant, tolerance to A. flavus infection [23] | Isra-Cirad, Senegal |
4 | ICGV 00440 | (ICGV 88386 × ASHFORD) × ICGV 95172 | Large-seeded high yielding variety, 100—seed weight (75 g) and low oil content (45%) | ICRISAT |
5 | ICGV 00308 | (ICGV 95244 × ICGV 96223) | Water deficit tolerant, short Duration, susceptible to LLS and rust | ICRISAT |
6 | GPBD 4 | KRG 1 × CS 16 | Resistant to LLS and rust (LLS score 4 at 90 days) [24] | UAS, Dharwad, India |
7 | ICGV 05155 | (ICGV 99160 × ICGV 99240) | High oil content (55 %) [25] and high oil yield | ICRISAT |
8 | ICGV 88145 | (PI337409 × FESR-12B6-B1-B1-B1-B) | Tolerance to Aspergillus infection under field [26] | ICRISAT |
Standard Checks | ||||
1 | ICGV 02266 | ICGV 94143 × ICGV 94136 | Drought tolerant; high yielding variety, moderate resistance to LLS | ICRISAT |
2 | ICGV 03042 | ICGV 99160 × (ICGV 93124 × (LI × ICGS 44)) | High oil (51%) [25], tolerance to LLS | ICRISAT |
3 | ICGV 03043 | ICGV 99160 × (ICGV 93124 × (Li × ICGS 44)) | High oil (50%) content; early maturity (110 days), tolerance to LLS | ICRISAT |
4 | ICGV 06420 | ICGV 87846 × ICGV 99240 | High oil (56%) [25], tolerance to LLS | ICRISAT |
5 | ICGV 14421 | ICGV 91114 × GPBD 4 | LLS and rust resistant | ICRISAT |
6 | ICGV 86105 | (Nc Ac 537) | High yielder across international environment | ICRISAT |
7 | GG 20 | GAUG-10 × R-33–1 | High yielding early maturity (110–115 days) | JAU, Gujrat |
8 | JL 24 | Selection from EC-94943 | LLS susceptible [27], early maturity, wider adaptability | MPKV, Jalgaon, India |
9 | M 335 | M-13 × F-7 | Tolerant to ELS and LLS | PAU, Ludhiana, India |
10 | ICGS 76 | ICGV 87141 (TMV 10 × Chico) | Tolerance to bud necrosis disease | ICRISAT |
11 | ICGV 171179 | ICG 9930 × ICG 13585 | Red seeded | ICRISAT |
12 | ICGV 171174 | ICG 9930 × ICG 13585 | Red seeded | ICRISAT |
13 | TMV 2 | Mass selection from “Gudhiatham bunch” | Susceptible to LLS and rust [4] | TNAU, Coimbatore |
Disease Score | Phenotype Description | Disease Severity (%) * |
---|---|---|
1 | No disease | 0 |
2 | Lesions present largely on lower leaves; no defoliation | 1–5% |
3 | Lesions present largely on lower leaves, few on middle leaves; defoliation of some leaflets evident on lower leaves | 6–10% |
4 | Lesions present on lower and middle leaves but severe on lower leaves; defoliation of some leaflets evident on lower leaves | 11–20% |
5 | Lesions present on lower and middle leaves, over 50% of defoliation of lower leaves | 21–30% |
6 | Severe lesions on lower and middle leaves; lesions present but less severe on top leaves; extensive defoliation of lower leaves; some defoliation on middle leaves | 31–40% |
7 | Lesions on all leaves but less severe on top leaves; defoliation of all lower and middle leaves | 41–60% |
8 | Defoliation of all lower and middle leaves; severe lesions on top leaves evident | 61–80% |
9 | Almost all leaves defoliated, leaving bare stem; some leaflets may remain but show severe leaf spot | 81–100% |
Trait | Genotypic Variance | SE (±) | Mean | Range | LSD | CV (%) | H2 (%) |
---|---|---|---|---|---|---|---|
Light Chamber | |||||||
IP | 2.04 ** | 0.178 | 9.35 | 7.40–14.93 | 1.49 | 14.66 | 68 |
LP | 6.46 ** | 0.436 | 22.54 | 17.40–27.61 | 1.65 | 6.69 | 85 |
LN | 1.73 ** | 0.123 | 38.75 | 5.00–83.00 | 1.25 | 14.45 | 82 |
LD | 0.27 ** | 0.018 | 2.33 | 0.74–3.69 | 0.69 | 11.06 | 89 |
LAD | 0.04 ** | 0.002 | 39.35 | 3.58–81.38 | 0.31 | 7.22 | 97 |
LLS_15_DAI | 0.16 ** | 0.01 | 5.33 | 2.16–8.71 | 0.54 | 6.83 | 93 |
LLS_30_DAI | 0.02 ** | 0.002 | 7.24 | 2.93–8.56 | 0.45 | 4.58 | 76 |
AUDPC_ LC | 1272.16 ** | 88.07 | 172.54 | 66.37-241.18 | 6.36 | 13.12 | 83 |
ICRISAT | |||||||
LLS_75_DAP_I | 0.04 ** | 0.003 | 3.68 | 1.28–4.88 | 0.5 | 6.98 | 82 |
LLS_105_DAP_I | 0.02 ** | 0.001 | 7.94 | 5.60–8.83 | 0.44 | 4.35 | 67 |
ARS (Kasbe Digraj) | |||||||
LLS_90_DAP_KD | 0.09 ** | 0.006 | 5.98 | 2.33–8.62 | 0.53 | 6.17 | 87 |
Designation | IP | LP | LN | LD | LAD | LLS_15_DAI | LLS_30_DAI | AUDPC_IC | LLS_75_DAP_I | LLS_105_DAP_I | LLS_90_DAP_KD |
---|---|---|---|---|---|---|---|---|---|---|---|
Parents | |||||||||||
ICGV 91114 | 7.74 | 17.40 | 41.06 | 2.66 | 52.05 | 7.77 | 8.19 | 222.45 | 4.33 | 8.74 | 7.38 |
ICGV 06040 | 8.42 | 21.66 | 33.36 | 1.90 | 47.21 | 5.48 | 7.07 | 172.51 | 3.42 | 8.01 | 3.69 |
55-437 | 9.11 | 23.36 | 25.82 | 2.04 | 18.04 | 3.58 | 7.03 | 147.53 | 3.08 | 6.78 | 4.26 |
ICGV 00440 | 8.77 | 20.80 | 57.38 | 2.48 | 50.60 | 7.77 | 7.80 | 216.21 | 3.83 | 7.00 | 5.11 |
ICGV 00308 | 8.42 | 19.53 | 40.33 | 2.35 | 39.76 | 6.41 | 7.44 | 191.24 | 3.96 | 8.54 | 4.77 |
GPBD 4 | 11.51 | 27.61 | 5.00 | 1.68 | 3.94 | 2.16 | 3.36 | 72.61 | 2.26 | 6.89 | 4.53 |
ICGV 05155 | 8.42 | 25.06 | 8.14 | 1.01 | 19.22 | 6.41 | 7.07 | 184.99 | 2.69 | 7.98 | 4.65 |
ICGV 88145 | 10.48 | 22.51 | 32.28 | 2.39 | 27.83 | 3.04 | 7.44 | 147.53 | 4.36 | 8.38 | 7.28 |
Checks | |||||||||||
ICGV 02266 | 9.45 | 25.06 | 37.78 | 2.04 | 13.09 | 3.12 | 7.44 | 147.53 | 2.21 | 6.71 | 4.10 |
ICGV 03042 | 8.77 | 18.25 | 50.61 | 2.53 | 52.05 | 6.41 | 7.44 | 191.24 | 2.28 | 7.74 | 2.39 |
ICGV 03043 | 11.51 | 27.61 | 23.20 | 2.13 | 23.46 | 2.62 | 6.67 | 128.80 | 2.65 | 7.60 | 2.44 |
ICGV 06420 | 11.16 | 27.61 | 64.06 | 2.21 | 40.93 | 2.62 | 7.44 | 141.29 | 4.06 | 8.26 | 6.64 |
ICGV 14421 | 11.16 | 25.91 | 27.34 | 2.04 | 29.31 | 2.16 | 6.67 | 122.56 | 3.45 | 8.08 | 6.05 |
ICGV 86105 | 11.51 | 25.06 | 22.61 | 1.68 | 16.63 | 3.58 | 7.07 | 147.53 | 3.22 | 8.37 | 6.36 |
GG 20 | 8.42 | 22.08 | 32.14 | 2.66 | 45.28 | 7.80 | 7.82 | 216.21 | 1.28 | 7.14 | 4.26 |
JL 24 | 8.42 | 20.80 | 45.63 | 3.02 | 56.90 | 5.94 | 7.44 | 184.99 | 4.38 | 7.92 | 7.78 |
M 335 | 9.79 | 21.66 | 29.20 | 2.44 | 25.43 | 6.89 | 7.44 | 197.48 | 3.94 | 7.65 | 6.69 |
ICGS 76 | 11.51 | 25.91 | 17.37 | 3.06 | 10.21 | 3.12 | 6.67 | 135.05 | 3.15 | 7.36 | 5.99 |
ICGV 171179 | 10.82 | 25.91 | 27.00 | 1.95 | 18.04 | 3.12 | 6.26 | 128.80 | 3.08 | 8.10 | 4.64 |
ICGV 171174 | 9.79 | 26.76 | 33.73 | 2.13 | 24.45 | 4.08 | 7.82 | 166.26 | 3.11 | 7.94 | 7.26 |
MAGIC Population-Mean | 9.33 | 22.50 | 38.95 | 2.34 | 40.05 | 5.35 | 7.25 | 172.85 | 3.70 | 7.94 | 6.00 |
MAGIC Population-Range | 7.40–14.93 | 17.40–27.61 | 5.51–83.06 | 0.74–3.69 | 3.58–81.38 | 2.16–8.71 | 2.93–8.56 | 66.37–241.18 | 2.15–4.88 | 5.60–8.83 | 2.83–8.62 |
Trait | IP | LP | LN | LAD | LD | LLS_15_DAI | LLS_30_DAI | LLS_75_DAP_I | LLS_105_DAP_I | LLS_90_DAP_KD |
---|---|---|---|---|---|---|---|---|---|---|
AUDPC_LC | −0.70 ** | −0.65 ** | 0.53 ** | 0.70 ** | 0.13 ** | 0.93 ** | 0.80 ** | 0.18 ** | 0.19 ** | 0.19 ** |
IP | 0.53 ** | −0.36 ** | −0.54 ** | −0.11 ** | −0.70 ** | −0.52 ** | −0.25 ** | −0.25 ** | −0.22 ** | |
LP | −0.30 ** | −0.48 ** | −0.09 * | −0.67 ** | −0.42 ** | −0.17 ** | −0.18 ** | −0.19 ** | ||
LN | 0.69 ** | 0.06 | 0.44 ** | 0.54 ** | 0.16 ** | 0.13 ** | 0.18 ** | |||
LAD | 0.16 ** | 0.64 ** | 0.61 ** | 0.20 ** | 0.18 ** | 0.20 ** | ||||
LD | 0.06 | 0.23 ** | 0.12 ** | 0.09 * | 0.16 ** | |||||
LLS_15_DAI | 0.62 ** | 0.10 * | 0.11 ** | 0.13 ** | ||||||
LLS_30_DAI | 0.23 ** | 0.23 ** | 0.21 ** | |||||||
LLS_75_DAP_I | 0.48 ** | 0.39 ** | ||||||||
LLS_105_DAP_I | 0.35 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wankhade, A.P.; Kadirimangalam, S.R.; Viswanatha, K.P.; Deshmukh, M.P.; Shinde, V.S.; Deshmukh, D.B.; Pasupuleti, J. Variability and Trait Association Studies for Late Leaf Spot Resistance in a Groundnut MAGIC Population. Agronomy 2021, 11, 2193. https://doi.org/10.3390/agronomy11112193
Wankhade AP, Kadirimangalam SR, Viswanatha KP, Deshmukh MP, Shinde VS, Deshmukh DB, Pasupuleti J. Variability and Trait Association Studies for Late Leaf Spot Resistance in a Groundnut MAGIC Population. Agronomy. 2021; 11(11):2193. https://doi.org/10.3390/agronomy11112193
Chicago/Turabian StyleWankhade, Ankush Purushottam, Sai Rekha Kadirimangalam, Kannalli Paramashivaiah Viswanatha, Milind Panjabrao Deshmukh, Vivek Shivajirao Shinde, Dnyaneshwar Bandu Deshmukh, and Janila Pasupuleti. 2021. "Variability and Trait Association Studies for Late Leaf Spot Resistance in a Groundnut MAGIC Population" Agronomy 11, no. 11: 2193. https://doi.org/10.3390/agronomy11112193
APA StyleWankhade, A. P., Kadirimangalam, S. R., Viswanatha, K. P., Deshmukh, M. P., Shinde, V. S., Deshmukh, D. B., & Pasupuleti, J. (2021). Variability and Trait Association Studies for Late Leaf Spot Resistance in a Groundnut MAGIC Population. Agronomy, 11(11), 2193. https://doi.org/10.3390/agronomy11112193