The Use of New Parameters to Optimize the Composting Process of Different Organic Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Materials
2.2. Composting Experiments
2.3. Analytical Methods
2.4. Statistics
3. Results and Discussion
3.1. Organic Materials Characteristics and Temperature Parameters
3.2. Physico-Chemical Parameters of the Mixtures and Temperature Evolution
3.3. Total and Soluble C and N and Temperature Evolution
3.4. Mixture Characteristics and Their Effect on Compost Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zeng, Y. Ammonia emission mitigation in food waste composting: A review. Bioresour. Technol. 2018, 248, 13–19. [Google Scholar] [CrossRef]
- Cucina, M.; Tacconi, C.; Sordi, S.; Pezzolla, D.; Gigliotti, G.; Zadra, C. Valorization of a pharmaceutical organic sludge through different composting treatments. Waste Manag. 2018, 74, 203–212. [Google Scholar] [CrossRef]
- Proietti, P.; Calisti, R.; Gigliotti, G.; Nasini, L.; Regni, L.; Marchini, A. Composting optimization: Integrating cost analysis with the physical-chemical properties of materials to be composted. J. Clean. Prod. 2016, 137, 1086–1099. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar] [CrossRef]
- Dhamodharan, K.; Varma, V.S.; Veluchamy, C.; Pugazhendhi, A.; Rajendran, K. Emission of volatile organic compounds from composting: A review on assessment, treatment and perspectives. Sci. Tot. Environ. 2019, 695, 133725. [Google Scholar] [CrossRef] [PubMed]
- Nasini, L.; De Luca, G.D.; Ricci, A.; Ortolani, F.; Caselli, A.; Massaccesi, L.; Regni, L.; Gigliotti, G.; Proietti, P. Gas emissions during olive mill waste composting under static pile conditions. Int. Biodet. Biodeg. 2016, 107, 70–76. [Google Scholar] [CrossRef]
- Cáceres, R.; Coromina, N.; Malińska, K.; Marfà, O. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media. Bioresour. Technol. 2015, 179, 398–406. [Google Scholar] [CrossRef]
- Sharma, D.; Yadav, K.D.; Kumar, S. Biotransformation of flower waste composting: Optimization of waste combinations using response surface methodology. Bioresour. Technol. 2018, 270, 198–207. [Google Scholar] [CrossRef]
- Adhikari, B.K.; Barrington, S.; Martinez, J.; King, S. Effectiveness of three bulking agents for food waste composting. Waste Manag. 2009, 29, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Barrena, R.; Turet, J.; Busquets, A.; Farrés, M.; Font, X.; Sánchez, A. Respirometric screening of several types of manure and mixtures intended for composting. Bioresour. Technol. 2011, 102, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Bueno, P.; Yanez, R.; Rivera, A.; Díaz, M.J. Modelling of parameters for optimization of maturity in composting trimming residues. Bioresour. Technol. 2009, 100, 5859–5864. [Google Scholar] [CrossRef]
- Trémier, A.; Teglia, C.; Barrington, S. Effect of initial physical characteristics on sludge compost performance. Bioresour. Technol. 2009, 100, 3751–3758. [Google Scholar] [CrossRef] [Green Version]
- Paradelo, R.; Moldes, A.B.; Barral, M.T. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. J. Environ. Manag. 2013, 116, 18–26. [Google Scholar] [CrossRef]
- Puyuelo, B.; Ponsá, S.; Gea, T.; Sánchez, A. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 2011, 85, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Samudrika, K.P.D.; Ariyawansha, R.T.K.; Basnayake, B.F.A.; Siriwardana, A.N. Optimization of biochar additions for enriching nitrogen in active phase low-temperature composting. Org. Agric. 2020, 10, 449–463. [Google Scholar] [CrossRef]
- Tambone, F.; Terruzzi, L.; Scaglia, B.; Adani, F. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties. Waste Manag. 2015, 35, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Said-Pullicino, D.; Erriquens, F.G.; Gigliotti, G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 2007, 98, 1822–1831. [Google Scholar] [CrossRef]
- Cucina, M.; Zadra, C.; Marcotullio, M.C.; Di Maria, F.; Sordi, S.; Curini, M.; Gigliotti, G. Recovery of energy and plant nutrients from a pharmaceutical organic waste derived from a fermentative biomass: Integration of anaerobic digestion and composting. J. Environ. Chem. Eng. 2017, 5, 3051–3057. [Google Scholar] [CrossRef]
- Tacconi, C.; Cucina, M.; Zadra, C.; Gigliotti, G.; Pezzolla, D. Plant nutrients recovery from aflatoxin B1 contaminated corn through co-composting. J. Environ. Chem. Eng. 2019, 7, 103046. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2016. [Google Scholar]
- The US Department of Agriculture and The US Composting Council. Test. Methods for the Examination of Composting and Compost; Edaphos International: Houston, TX, USA, 2016.
- Alburquerque, J.A.; McCartney, D.; Yu, S.; Brown, L.; Leonard, J.J. Air space in composting research: A literature review. Compost Sci. Util. 2008, 16, 159–170. [Google Scholar] [CrossRef]
- Gigliotti, G.; Proietti, P.; Said-Pullicino, D.; Nasini, L.; Pezzolla, D.; Rosati, L.; Porceddu, P.R. Co-composting of olive husks with high moisture contents: Organic matter dynamics and compost quality. Int. Biodeter. Biodegr. 2012, 67, 8–14. [Google Scholar] [CrossRef]
- Ciavatta, C.; Govi, M.; Antisari, L.V.; Sequi, P. Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. J. Chromatogr. A. 1990, 509, 141–146. [Google Scholar] [CrossRef]
- Agnew, J.M.; Leonard, J.J. The physical properties of compost. Compost Sci. Util. 2003, 11, 238–264. [Google Scholar] [CrossRef]
- Miller, F.C. Composting as a process based on the control of ecologically selective factors. In Soil Microbial Ecology: Applications in Agricultural and Environmental Management; Metting., F.B., Ed.; CRC Press: Ottawa, ON, Canada, 1992; pp. 515–544. [Google Scholar]
- Arslan, E.I.; Ünlü, A.; Topal, M. Determination of the effect of aeration rate on composting of vegetable–fruit wastes. CLEAN–Soil Air Water. 2011, 39, 1014–1021. [Google Scholar] [CrossRef]
- Nunes, M.A.; Costa, A.S.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid-and water-soluble components. Sci. Tot. Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Şevik, F.; Tosun, İ.; Ekinci, K. The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks. Waste Manag. 2018, 80, 450–456. [Google Scholar] [CrossRef]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef]
- Haddadin, M.S.; Haddadin, J.; Arabiyat, O.I.; Hattar, B. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour. Technol. 2009, 100, 4773–4782. [Google Scholar] [CrossRef]
- Gianico, A.; Braguglia, C.M.; Mescia, D.; Mininni, G. Ultrasonic and thermal pretreatments to enhance the anaerobic bioconversion of olive husks. Bioresour. Technol. 2013, 147, 623–626. [Google Scholar] [CrossRef]
- Pigoli, A.; Zilio, M.; Tambone, F.; Mazzini, S.; Schepis, M.; Meers, E.; Schoumans, O.; Giordano, A.; Adani, F. Thermophilic anaerobic digestion as suitable bioprocess producing organic and chemical renewable fertilizers: A full-scale approach. Waste Manag. 2021, 124, 356–367. [Google Scholar] [CrossRef]
- Jamroz, E.; Bekier, J.; Medynska-Juraszek, A.; Kaluza-Haladyn, A.; Cwielag-Piasecka, I.; Bednik, M. The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: A case study. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Kong, Z.; Wang, Q.; Fang, L.; Liu, D.; Shen, Q. Insights on the aerobic biodegradation of agricultural wastes under simulated rapid composting conditions. J. Clean Prod. 2019, 220, 688–697. [Google Scholar] [CrossRef]
- Martín-Mata, J.; Lahoz-Ramos, C.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Moral, R.; Santos, A.; Bernal, M.P. Thermal and spectroscopic analysis of organic matter degradation and humification during composting of pig slurry in different scenarios. Environ. Sci. Pollut. R. 2016, 23, 17357–17369. [Google Scholar] [CrossRef] [PubMed]
- Doublet, J.; Francou, C.; Poitrenaud, M.; Houot, S. Sewage sludge composting: Influence of initial mixtures on organic matter evolution and N availability in the final composts. Waste Manag. 2010, 30, 1922–1930. [Google Scholar] [CrossRef] [PubMed]
- Fornes, F.; Mendoza-Hernández, D.; García-de-la-Fuente, R.; Abad, M.; Belda, R.M. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol. 2012, 118, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Idler, C.; Ammon, C.; Amon, T. Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting. Waste Manag. 2020, 105, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Mao, H.; Wang, Z.; Tian, Y. Succession of organics metabolic function of bacterial community in swine manure composting. J. Hazard. Mater. 2018, 360, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Decreto Legislativo 29 Aprile 2010, n. 75. In Riordino e Revisione della Disciplina in Materia di Fertilizzanti, a Norma dell’Articolo 13 della Legge 7 Luglio 2009 n. 88; Gazzetta Ufficiale n. 121-Suppl. Ordin. n.106; Governo Italiano: Roma, Italy, 2010.
- Calisti, R.; Regni, L.; Proietti, P. Compost-recipe: A new calculation model and a novel software tool to make the composting mixture. J. Clean. Prod. 2020, 270, 122427. [Google Scholar] [CrossRef]
- Doña-Grimaldi, V.M.; Palma, A.; Ruiz-Montoya, M.; Morales, E.; Díaz, M.J. Energetic valorization of MSW compost valorization by selecting the maturity conditions. J. Environ. Manag. 2019, 238, 153–158. [Google Scholar] [CrossRef]
- Majdinasab, A.; Zhang, Z.; Yuan, Q. Modelling of landfill gas generation: A review. Rev. Environ. Sci. Biol. 2017, 16, 361–380. [Google Scholar] [CrossRef]
- Siles-Castellano, A.B.; López, M.J.; López-González, J.A.; Suárez-Estrella, F.; Jurado, M.M.; Estrella-González, M.J.; Moreno, J. Comparative analysis of phytotoxicity and compost quality in industrial composting facilities processing different organic wastes. J. Clean Prod. 2020, 252, 119820. [Google Scholar] [CrossRef]
Type | Acronym | Description | Moisture (%) | TOC (%) | TKN (%) | pH | Bulk Density (kg L−1) |
---|---|---|---|---|---|---|---|
Raw wastes | OFMSW | Organic fraction of the municipal solid wastes | 69.7 ± 0.2 | 22.2 ± 0.1 | 1.3 ± 0.1 | 3.2 ± 0.0 | 0.8 ± 0.1 |
PS | Pig slurry | 93.4 ± 0.6 | 40.2 ± 0.3 | 3.7 ± 0.2 | 7.3 ± 0.1 | 1.0 ± 0.0 | |
CC | AFB1 contaminated chopped corn | 14.0 ± 0.1 | 37.5 ± 0.0 | 1.5 ± 0.1 | 6.1 ± 0.1 | 0.4 ± 0.1 | |
AD-CC | Anaerobically digested AFB1 contaminated chopped corn | 93.8 ± 0.1 | 21.8 ± 0.1 | 6.3 ± 0.3 | 7.5 ± 0.0 | 0.9 ± 0.1 | |
OMW | Olive mill wastes | 65.1 ± 1.2 | 39.9 ± 0.5 | 0.9 ± 0.2 | 5.9 ± 0.0 | 0.8 ± 0.1 | |
SS | Sewage sludge | 89.9 ± 0.3 | 18.7 ± 0.6 | 3.8 ± 0.1 | 8.0 ± 0.1 | 0.8 ± 0.1 | |
AD-PW | Anaerobically digested pharmaceutical wastewater | 96.2 ± 0.2 | 41.4 ± 0.2 | 9.4 ± 0.4 | 7.4 ± 0.2 | 0.9 ± 0.0 | |
CS | Cereal straw | 14.2 ± 0.0 | 43.2 ± 0.2 | 0.7 ± 0.0 | 6.7 ± 0.0 | 0.1 ± 0.0 | |
Bulking agents | WC | Wood chips | 57.2 ± 0.9 | 42.1 ± 0.2 | 0.6 ± 0.1 | 6.8 ± 0.1 | 0.4 ± 0.1 |
BLTP | Broadleaf tree pruning | 6.1 ± 0.0 | 34.4 ± 0.0 | 0.8 ± 0.1 | 5.7 ± 0.1 | 0.2 ± 0.0 | |
C-BLTP | Chopped broadleaf tree pruning | 6.9 ± 0.0 | 33.9 ± 0.5 | 1.0 ± 0.2 | 6.1 ± 0.0 | 0.2 ± 0.0 | |
CTP | Conifer tree pruning | 26.5 ± 0.5 | 39.6 ± 0.5 | 0.6 ± 0.1 | 6.8 ± 0.0 | 0.3 ± 0.1 | |
C-CTP | Chopped conifer tree pruning | 24.8 ± 0.3 | 38.7 ± 0.7 | 0.7 ± 0.1 | 6.8 ± 0.1 | 0.3 ± 0.0 |
Mixture | Composition (% w/w) |
---|---|
1 a | 43% OFMSW + 43% WC + 14% CC |
2 a | 40% PS + 40% WC + 12% CC + 8% CS |
3 | 42% AD-CC + 54% WC + 4% CS |
4 | 55% PS + 45% BLTP |
5 | 55% PS + 45% CTP |
6 | 55% PS + 45% C-BLTP |
7 | 55% PS + 45% C-CTP |
8 | 80% OMW + 20% C-BLTP |
9 | 80% OMW + 20% C-CTP |
10 b | 70% SS + 30% WC |
11 b | 45% SS + 45% WC + 10% CS |
12 c | 50% AD-PW + 40% WC + 10% CS |
Mixture | T Max | h > 55 °C | Cumulative DH |
---|---|---|---|
1 | 72 | 312 | 36,048 |
2 | 74 | 336 | 38,160 |
3 | 56 | 96 | 28,855 |
4 | 37 | 0 | 15,288 |
5 | 36 | 0 | 16,128 |
6 | 30 | 0 | 14,400 |
7 | 40 | 0 | 15,936 |
8 | 12 | 0 | 7704 |
9 | 12 | 0 | 7536 |
10 | 41 | 0 | 19,586 |
11 | 67 | 96 | 23,614 |
12 | 64 | 72 | 26,369 |
Mixture | Moisture (%) | Volatile Solids (%) | pH | EC (dS m−1) | AFP (%) |
---|---|---|---|---|---|
1 a | 67 ± 1 | 73.5 ± 0.1 | 3.3 ± 0.0 | 3.3 ± 0.1 | 53.7 |
2 a | 55 ± 1 | 65.2 ± 0.0 | 7.3 ± 0.1 | 1.3 ± 0.1 | 53.7 |
3 | 57 ± 0 | 86.3 ± 0.0 | 6.8 ± 0.1 | 2.5 ± 0.2 | 44.7 |
4 | 57 ± 0 | 71.0 ± 0.3 | 8.4 ± 0.1 | 0.7 ± 0.0 | 70.8 |
5 | 62 ± 0 | 79.5 ± 0.8 | 8.3 ± 0.1 | 0.7 ± 0.0 | 67.2 |
6 | 70 ± 2 | 72.4 ± 0.7 | 8.3 ± 0.2 | 0.8 ± 0.1 | 56.4 |
7 | 64 ± 1 | 76.8 ± 0.3 | 8.2 ± 0.1 | 0.9 ± 0.0 | 60.9 |
8 | 60 ± 1 | 86.9 ± 0.4 | 5.9 ± 0.0 | 2.4 ± 0.2 | 34.8 |
9 | 60 ± 1 | 89.1 ± 1.2 | 6.1 ± 0.0 | 2.1 ± 0.1 | 46.5 |
10 b | 68 ± 1 | 77.6 ± 0.8 | 8.2 ± 0.0 | 2.1 ± 0.1 | 47.4 |
11 b | 62 ± 0 | 82.1 ± 0.2 | 7.9 ± 0.1 | 1.2 ± 0.1 | 56.4 |
12 c | 65 ± 0 | 69.1 ± 0.3 | 8.2 ± 0.1 | 1.5 ± 0.0 | 51.9 |
Mixtures | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
TOC (%) | 33.4 ± 0.1 | 26.1 ± 0.1 | 40.5 ± 0.2 | 28.4 ± 0.1 | 31.8 ± 0.0 | 34.2 ± 0.0 | 35.9 ± 0.2 | 43.2 ± 0.4 | 44.1 ± 0.3 | 29.6 ± 0.6 | 31.2 ± 0.2 | 36.3 ± 0.0 |
TKN (%) | 1.7 ± 0.1 | 1.2 ± 0.1 | 1.0 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.0 | 1.3 ± 0.1 | 1.3 ± 0.1 | 0.7 ± 0.1 | 1.0 ± 0.2 | 2.1 ± 0.2 | 1.7 ± 0.2 | 1.6 ± 0.1 |
TOC/TKN | 19.6 | 21.7 | 40.5 | 17.7 | 19.9 | 26.3 | 27.6 | 61.7 | 44.1 | 14.1 | 18.4 | 22.7 |
Amm-N (%) | 0.20 ± 0.02 | 0.12 ± 0.01 | 0.10 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.10 ± 0.00 | 0.12 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.10 ± 0.02 | 0.06 ± 0.01 | 0.11 ± 0.02 |
TOC/Amm-N | 167 | 217.5 | 405 | 258.2 | 244.6 | 342 | 299.2 | 864 | 882 | 296 | 520 | 330 |
WEOC (%) | 4.00 ± 0.01 | 3.18 ± 0.05 | 4.20 ± 0.12 | 1.15 ± 0.05 | 1.24 ± 0.06 | 1.15 ± 0.05 | 1.20 ± 0.06 | 10.67 ± 0.24 | 9.36 ± 0.18 | 2.18 ± 0.10 | 2.38 ± 0.13 | 3.54 ± 0.04 |
WEOC/TKN | 2.35 | 2.65 | 4.2 | 0.72 | 0.78 | 0.88 | 0.92 | 15.24 | 9.36 | 1.04 | 1.4 | 2.21 |
WEOC/Amm-N | 20 | 26.5 | 42 | 10.5 | 9.5 | 11.5 | 10 | 213.4 | 187.2 | 21.8 | 39.7 | 32.2 |
WEN (%) | 0.50 ± 0.04 | 0.43 ± 0.03 | 1.00 ± 0.06 | 0.17 ± 0.01 | 0.18 ± 0.01 | 0.18 ± 0.02 | 0.17 ± 0.00 | 0.09 ± 0.02 | 0.08 ± 0.01 | 0.25 ± 0.02 | 0.40 ± 0.04 | 0.52 ± 0.00 |
WEON (%) | 0.30 ± 0.01 | 0.31 ± 0.01 | 0.90 ± 0.01 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.08 ± 0.01 | 0.05 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.00 | 0.15 ± 0.02 | 0.34 ± 0.01 | 0.41 ± 0.02 |
TOC/WEN | 66.8 | 60.7 | 40.5 | 167.1 | 176.7 | 190 | 211.2 | 480 | 551.3 | 118.4 | 78 | 69.8 |
WEOC/WEN | 8 | 7.4 | 4.2 | 6.8 | 6.9 | 6.4 | 7.1 | 118.6 | 117 | 8.7 | 5.9 | 6.8 |
TOC/WEON | 111.3 | 84.2 | 45 | 473.3 | 636 | 427.5 | 718 | 1080 | 1470 | 197.3 | 91.8 | 88.5 |
WEOC/WEON | 13.3 | 10.3 | 4.7 | 19.2 | 24.8 | 14.4 | 24 | 266.8 | 312 | 14.5 | 7.0 | 8.6 |
T Max (y) | h > 55 °C (y) | Cumulative DH (y) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x | m | q | R2 | r | m | q | R2 | r | m | q | R2 | r |
TOC | −2.1080 | 117.93 | 0.3124 | n.s. | −7.8552 | 347.46 | 0.1351 | n.s. | −853.54 | 50299 | 0.2379 | n.s. |
TKN | 24.3370 | 11.01 | 0.1919 | n.s. | 18.7950 | 49.68 | 0.0036 | n.s. | 7560 | 10217 | 0.0860 | n.s. |
TOC/TKN | −0.9250 | 70.85 | 0.3588 | 0.5990 * | −2.1832 | 136.84 | 0.0623 | n.s. | −336.34 | 30174 | 0.2204 | n.s. |
Amm-N | 297.18 | 14.12 | 0.3152 | n.s. | 1694.8 | −100.54 | 0.3193 | n.s. | 155288 | 4626 | 0.3998 | 0.6323 * |
TOC/Amm-N | −0.0596 | 69.03 | 0.4314 | 0.6568 * | −0.2070 | 159.25 | 0.1623 | n.s. | −26.81 | 31584 | 0.4060 | 0.6372 * |
WEOC | −3.1730 | 56.78 | 0.2173 | n.s. | −1.4462 | 81.33 | 0.0014 | n.s. | −1044.3 | 24653 | 0.1093 | n.s. |
WEOC/TKN | −2.7408 | 54.62 | 0.3159 | n.s. | −3.9539 | 89.75 | 0.0205 | n.s. | −978.41 | 24207 | 0.1870 | n.s. |
WEOC/Amm-N | −0.1926 | 55.10 | 0.3945 | 0.6281 * | −0.4063 | 97.13 | 0.0547 | n.s. | −75.89 | 24750 | 0.2845 | n.s. |
WEN | 54.7250 | 26.06 | 0.4417 | 0.6646 * | 205.60 | 4.55 | 0.1942 | n.s. | 27274 | 11324 | 0.5095 | 0.7138 ** |
WEON | 50.6530 | 32.75 | 0.3551 | 0.5959 * | 175.39 | 33.32 | 0.1326 | n.s. | 25059 | 14704 | 0.4036 | 0.6353 * |
TOC/WEN | −0.1101 | 64.87 | 0.7358 | 0.8578 ** | −0.3418 | 137.45 | 0.2209 | n.s. | −47.13 | 29276 | 0.6263 | 0.7914 ** |
TOC/WEON | −0.0404 | 62.94 | 0.7465 | 0.8640 ** | −0.1367 | 136.48 | 0.2667 | n.s. | −17.58 | 28580 | 0.6577 | 0.8110 ** |
WEOC/WEN | −0.2100 | 54.31 | 0.5068 | 0.7119 ** | −0.7904 | 95.75 | 0.0785 | n.s. | −141.06 | 24327 | 0.3729 | 0.6107 * |
WEOC/WEON | −0.1467 | 53.78 | 0.5403 | 0.7351 ** | −0.3477 | 96.60 | 0.0945 | n.s. | −58.98 | 24298 | 0.4054 | 0.6367 * |
Mixtures | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | 1 a | 2 a | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 b | 11 b | 12 c | Limit Value d |
TOC (%) | 20.2 ± 0.8 | 21.7 ± 0.2 | 21.6 ± 0.2 | 25.4 ± 0.1 | 24.8 ± 0.0 | 23.7 ± 0.1 | 25.2 ± 0.0 | 36.2 ± 0.0 | 36.2 ± 0.5 | 30.7 ± 0.6 | 23.2 ± 0.3 | 30.4 ± 0.2 | 20 (min) |
TKN (%) | 2.2 ± 0.1 | 2.1 ± 0.1 | 1.0 ± 0.2 | 1.4 ± 0.1 | 1.3 ± 0.1 | 1.2 ± 0.2 | 1.3 ± 0.1 | 1.2 ± 0.0 | 1.3 ± 0.0 | 3.2 ± 0.2 | 2.5 ± 0.2 | 2.7 ± 0.2 | - |
TOC/TKN | 9.2 | 10.3 | 21.6 | 18.1 | 19.1 | 19.8 | 19.4 | 30.2 | 27.8 | 9.6 | 9.3 | 11.3 | 25 |
OM-loss (%) | 62.1 ± 0.3 | 80.2 ± 0.8 | 66.0 ± 0.4 | 17.0 ± 0.1 | 17.5 ± 0.0 | 18.2 ± 0.2 | 17.9 ± 0.1 | 6.2 ± 0.6 | 5.8 ± 0.5 | 30.9 ± 0.4 | 63.1 ± 1.3 | 38.8 ± 1.0 | - |
Moisture (%) | 36.9 ± 0.2 | 31.5 ± 0.6 | 44.9 ± 0.5 | 53.7 ± 0.6 | 42.8 ± 0.8 | 55.9 ± 0.5 | 48.1 ± 0.0 | 59.2 ± 0.4 | 63.6 ± 0.7 | 63.0 ± 0.6 | 48.3 ± 0.4 | 48.1 ± 0.3 | 50 |
pH | 7.3 ± 0.1 | 7.2 ± 0.0 | 7.9 ± 0.0 | 8.0 ± 0.1 | 7.8 ± 0.1 | 8.0 ± 0.1 | 7.9 ± 0.0 | 7.0 ± 0.0 | 7.2 ± 0.0 | 7.9 ± 0.0 | 8.3 ± 0.2 | 8.4 ± 0.1 | 6–8.5 |
EC (dS m−1) | 2.3 ± 0.0 | 2.1 ± 0.0 | 3.7 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.2 | 0.8 ± 0.1 | 0.6 ± 0.0 | 4.6 ± 0.0 | 1.9 ± 0.2 | 3.5 ± 0.2 | - |
HA + FA (%) | 8.4 ± 0.1 | 9.3 ± 0.1 | 11.4 ± 0.2 | 7.7 ± 0.2 | 8.3 ± 0.1 | 8.2 ± 0.2 | 8.4 ± 0.2 | 6.8 ± 0.1 | 6.3 ± 0.0 | 8.3 ± 0.1 | 11.7 ± 0.1 | 12.1 ± 0.1 | 7 (min) |
GI (%) | 112.9 ± 1.4 | 103.6 ± 0.8 | 100.6 ± 2.0 | 72.9 ± 2.3 | 69.3 ± 1.6 | 70.8 ± 1.0 | 69.4 ± 0.5 | 58.7 ± 0.8 | 54.3 ± 1.0 | 78.3 ± 1.4 | 92.3 ± 2.3 | 83.7 ± 0.2 | 60 (min) |
Mixture | Compost | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WEN | WEON | TOC/WEN | TOC/WEON | WEOC/WEN | WEOC/WEON | TOC | TKN | C/N | OM-loss | Moisture | pH | EC | HA + FA | GI | ||
Mixture | WEN | 1 | ||||||||||||||
WEON | 0.9880 ** | 1 | ||||||||||||||
TOC/WEN | −0.6910 * | −0.6199 * | 1 | |||||||||||||
TOC/WEON | −0.6798 * | −0.6798 * | 0.9725 ** | 1 | ||||||||||||
WEOC/WEN | n.s. | n.s. | 0.9344 ** | 0.8438 ** | 1 | |||||||||||
WEOC/WEON | n.s. | n.s. | 0.9538 ** | 0.8820 ** | 0.9940 ** | 1 | ||||||||||
Compost | TOC | n.s. | n.s. | 0.7624 ** | 0.6919 * | 0.7904 ** | 0.7884 ** | 1 | ||||||||
TKN | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 1 | ||||||||
C/N | n.s. | n.s. | 0.8397 ** | 0.8379 ** | 0.7524 ** | 0.7647 ** | 0.5830 * | −0.8119 ** | 1 | |||||||
OM-loss | 0.7599 ** | 0.7243 ** | −0.7374 ** | −0.7863 ** | n.s. | n.s. | −0.6904 * | n.s. | −0.6836 * | 1 | ||||||
Moisture | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 0.5823 * | n.s. | 0.5777 * | n.s. | 1 | |||||
pH | n.s. | n.s. | n.s. | n.s. | −0.6650 * | −0.6507 * | n.s. | n.s. | n.s. | n.s. | n.s. | 1 | ||||
EC | 0.7798 ** | 0.7643 ** | −0.7161 ** | −0.7575 ** | n.s. | n.s. | n.s. | 0.6419 * | −0.5848 * | n.s. | n.s. | n.s | 1 | |||
HA + FA | 0.7351 ** | 0.7450 ** | −0.7222 ** | −0.7501 ** | −0.5927 * | −0.6198 * | n.s. | n.s. | n.s. | 0.6774 * | n.s. | 0.6722 * | 0.5898 * | 1 | ||
GI | 0.7626 ** | 0.6892 * | −0.7984 ** | −0.8320 ** | −0.6105 * | −0.6418 * | −0.7870 ** | n.s. | −0.7343 ** | 0.9476 ** | n.s. | n.s. | n.s. | 0.6065 * | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzolla, D.; Cucina, M.; Proietti, P.; Calisti, R.; Regni, L.; Gigliotti, G. The Use of New Parameters to Optimize the Composting Process of Different Organic Wastes. Agronomy 2021, 11, 2090. https://doi.org/10.3390/agronomy11102090
Pezzolla D, Cucina M, Proietti P, Calisti R, Regni L, Gigliotti G. The Use of New Parameters to Optimize the Composting Process of Different Organic Wastes. Agronomy. 2021; 11(10):2090. https://doi.org/10.3390/agronomy11102090
Chicago/Turabian StylePezzolla, Daniela, Mirko Cucina, Primo Proietti, Roberto Calisti, Luca Regni, and Giovanni Gigliotti. 2021. "The Use of New Parameters to Optimize the Composting Process of Different Organic Wastes" Agronomy 11, no. 10: 2090. https://doi.org/10.3390/agronomy11102090
APA StylePezzolla, D., Cucina, M., Proietti, P., Calisti, R., Regni, L., & Gigliotti, G. (2021). The Use of New Parameters to Optimize the Composting Process of Different Organic Wastes. Agronomy, 11(10), 2090. https://doi.org/10.3390/agronomy11102090