The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil
2.2. Experimental Details
2.3. Crop Management
2.4. Field Measurements
2.4.1. Weed Density and Dry Weight
2.4.2. Yield-Related Traits and Yield of Wheat
2.5. Statistical Analysis
2.6. Economic Analysis
3. Results
3.1. Weed Species
3.2. Weed Density (Plants m−2) and Biomass (g m−2)
3.3. Percent Reduction in Weed Density and Biomass
3.4. Yield Parameters and Grain Yield (t ha−1)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Available online: https://www.fao.org/faostat/en/#home (accessed on 14 March 2021).
- Beddington, J. Foresight: The Future of Food and Farming; Final Project Report London; The Government Office for Science: London, UK, 2011. [Google Scholar]
- Khan, I.A.; Khan, M.S. Developing Sustainable Agriculture in Pakistan; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1351208217. [Google Scholar]
- Shahzad, M.; Farooq, M.; Hussain, M. Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil Tillage Res. 2016, 163, 71–79. [Google Scholar] [CrossRef]
- Farooq, S.; Shahid, M.; Khan, M.B.; Hussain, M.; Farooq, M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agron. Crop Sci. 2015, 201, 173–188. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Habib, M.M.M.M.; Khan, M.S.M.S.; Ahmad, I.; Farooq, S.; Siddique, K.H. Influence of seed priming techniques on grain yield and economic returns of bread wheat planted at different spacings. Crop Pasture Sci. 2020, 71, 725. [Google Scholar] [CrossRef]
- Farooq, U.; Sharif, M.; Erenstein, O. Adoption and Impacts of Zero-Tillage in the Rice-Wheat Zone of Irrigated Punjab, Pakistan; CIMMYT: El Batan, Mexico, 2007. [Google Scholar]
- Shahzad, M.; Farooq, M.; Jabran, K.; Hussain, M. Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Prot. 2016, 89, 161–169. [Google Scholar] [CrossRef]
- Ghani Akbar, G.; Hussain, Z.; Yasin, M. Problems and potentials of permanent raised bed cropping systems in Pakistan. Pak. J. Water Resour. 2007, 11, 11. [Google Scholar]
- GOP. Economic Survey of Pakistan; Economic Advisory Wing: Islamabad, Pakistan, 2020. [Google Scholar]
- Razzaq, A.; Cheema, Z.; Jabran, K.; Hussain, M.; Farooq, M.; Zafar, M. Reduced herbicide doses used together with allelopathic sorghum and sunflower water extracts for weed control in wheat. J. Plant Prot. Res. 2012, 52, 281–285. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Weed Dynamics and Management in Wheat. Advanc. Agron. 2017, 145, 97–166. [Google Scholar]
- Kadioglu, I.; Farooq, S. Potential Distribution of Sterile Oat (Avena sterilis L.) in Turkey under Changing Climate. Turk. J. Weed Sci. 2017, 20, 1–13. [Google Scholar]
- Zeller, A.K.; Zeller, Y.I.; Gerhards, R. A long-term study of crop rotations, herbicide strategies and tillage practices: Effects on Alopecurus myosuroides Huds. Abundance and contribution margins of the cropping systems. Crop Prot. 2021, 145, 105613. [Google Scholar] [CrossRef]
- Oad, F.C.; Siddiqui, M.H.; Buriro, U.A. Growth and yield losses in wheat due to different weed densities. Asian J. Plant Sci. 2007. [Google Scholar] [CrossRef][Green Version]
- Melander, B.; Jabran, K.; De Notaris, C.; Znova, L.; Green, O.; Olesen, J.E. Inter-row hoeing for weed control in organic spring cereals—Influence of inter-row spacing and nitrogen rate. Eur. J. Agron. 2018. [Google Scholar] [CrossRef]
- Moss, S. Integrated weed management (IWM): Why are farmers reluctant to adopt non-chemical alternatives to herbicides? Pest Manag. Sci. 2019, 75, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Kraehmer, H.; Laber, B.; Rosinger, C.; Schulz, A. Herbicides as weed control agents: State of the art: I. Weed control research and safener technology: The path to modern agriculture. Plant Physiol. 2014, 166, 1119–1131. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Beckie, H.J. Herbicide-Resistant Weeds: Management Tactics and Practices. Weed Technol. 2006, 20, 793–814. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 314–347. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Egan, J.F.; Maxwell, B.D.; Mortensen, D.A.; Ryan, M.R.; Smith, R.G. 2,4-dichlorophenoxyacetic acid (2,4-D)-resistant crops and the potential for evolution of 2,4-D-resistant weeds. Proc. Natl. Acad. Sci. USA 2011, 108, 37. [Google Scholar] [CrossRef][Green Version]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Permingeat, H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 2020, 290, 110255. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Weed-Crop Competition: A Review; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 0470290102. [Google Scholar]
- Blackshaw, R.E.; O’Donovan, J.T.; Harker, K.N.; Li, X. Beyond herbicides: New approaches to managing weeds. In Proceedings of the International Conference on Environmentally Sustainable Agriculture for Dry Areas, Citeseer, Shijiazhuang, China, 15–19 September 2002; pp. 305–312. [Google Scholar]
- Jabran, K.; Cheema, Z.A.; Farooq, M.; Hussain, M. lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). Int. J. Agric. Biol. 2010, 12, 335–340. [Google Scholar]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The role of allelopathy in agricultural pest management. Pest Manag. Sci. 2011, 67, 493–506. [Google Scholar] [CrossRef]
- Jabran, K.; Chauhan, B.S. Non-Chemical Weed Control; Academic Press: Cambridge, MA, USA, 2018; ISBN 9780128098813. [Google Scholar]
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed flora composition of different barley-based cropping systems under conventional and conservation tillage practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Mubeen, K.; Shehzad, M.; Sarwar, N.; Rehman, H.U.; Yasir, T.A.; Wasaya, A.; Ahmad, M.; Hussain, M.; Abbas, M.B.; Yonas, M.W.; et al. The impact of horse purslane (Trianthema portulacastrum L.) infestation on soybean [Glycine max (L.) Merrill] productivity in northern irrigated plains of Pakistan. PLoS ONE 2021, 16, e0257083. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Larney, F.O.; Lindwall, C.W.; Kozub, G.C. Crop rotation and tillage effects on weed populations on the semi-arid Canadian prairies. Weed Technol. 1994. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Ghosh, D.; Brahmachari, K.; Brestic, M.; Ondrisik, P.; Hossain, A.; Skalicky, M.; Sarkar, S.; Moulick, D.; Dinda, N.K.; Das, A.; et al. Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India. Agronomy 2020, 10, 1906. [Google Scholar] [CrossRef]
- Forcella, F.; Lindstrom, M.J. Weed Seed Populations in Ridge and Conventional Tillage. Weed Sci. 1988, 36, 500–503. [Google Scholar] [CrossRef]
- Davis, A.S.; Liebman, M. Cropping system effects on giant foxtail (Setaria faberi) demography: I. Green manure and tillage timing. Weed Sci. 2003, 51, 919–929. [Google Scholar] [CrossRef]
- Sohail, S.; Ansar, M.; Skalicky, M.; Wasaya, A.; Soufan, W.; Ahmad Yasir, T.; El-Shehawi, A.M.; Brestic, M.; Sohidul Islam, M.; Ali Raza, M.; et al. Influence of Tillage Systems and Cereals–Legume Mixture on Fodder Yield, Quality and Net Returns under Rainfed Conditions. Sustainability 2021, 13, 2172. [Google Scholar] [CrossRef]
- Jalli, M.; Huusela, E.; Jalli, H.; Kauppi, K.; Niemi, M.; Himanen, S.; Jauhiainen, L. Effects of Crop Rotation on Spring Wheat Yield and Pest Occurrence in Different Tillage Systems: A Multi-Year Experiment in Finnish Growing Conditions. Front. Sustain. Food Syst. 2021, 5, 214. [Google Scholar] [CrossRef]
- Farooq, N.; Abbas, T.; Tanveer, A.; Jabran, K. Allelopathy for weed management. In Co-Evolution of Secondary Metabolites; Springer: New York, NY, USA, 2020; pp. 505–519. [Google Scholar]
- Jabran, K.; Farooq, M. Implications of potential allelopathic crops in agricultural systems. In Allelopathy; Springer: Berlin/Heidelberg, Germany, 2013; pp. 349–385. [Google Scholar]
- Khan, M.B.; Ahmad, M.; Hussain, M.; Jabran, K.; Farooq, S.; Waqas-Ul-Haq, M. Allelopathic plant water extracts tank mixed with reduced doses of atrazine efficiently control Trianthema portulacastrum L. in Zea mays L. J. Anim. Plant Sci. 2012, 22, 339–346. [Google Scholar]
- Jabran, K. Sunflower allelopathy for weed control. In Manipulation of Allelopathic Crops for Weed Control; Springer: New York, NY, USA, 2017; pp. 77–85. [Google Scholar]
- Puig, C.G.; Álvarez-Iglesias, L.; Reigosa, M.J.; Pedrol, N. Eucalyptus globulus Leaves Incorporated as Green Manure for Weed Control in Maize. Weed Sci. 2013. [Google Scholar] [CrossRef]
- Weston, L.A.; Alsaadawi, I.S.; Baerson, S.R. Sorghum Allelopathy—From Ecosystem to Molecule. J. Chem. Ecol. 2013, 39, 142–153. [Google Scholar] [CrossRef]
- Jabran, K. Sorghum allelopathy for weed control. In Manipulation of Allelopathic Crops for Weed Control; Springer: New York, NY, USA, 2017; pp. 65–75. [Google Scholar]
- Díaz Solares, M.; Cazaña Martínez, Y.; Pérez Hernández, Y.; Valdivia Ávila, A.; Prieto Abreu, M.; Lugo Morales, Y. Qualitative evaluation of secondary metabolites in extracts of morus alba L. (Mulberry) varieties and hybrids. Rev. Cuba. Plantas Med. 2015, 20, 358–366. [Google Scholar]
- Czarnota, M.A.; Paul, R.N.; Weston, L.A.; Duke, S.O. Anatomy of Sorgoleone-Secreting Root Hairs of Sorghum Species. Int. J. Plant Sci. 2003, 164, 861–866. [Google Scholar] [CrossRef]
- Brankov, M.; Simić, M.; Dragičević, V. The influence of maize—winter wheat rotation and pre-emergence herbicides on weeds and maize productivity. Crop Prot. 2021. [Google Scholar] [CrossRef]
- MacLaren, C.; Labuschagne, J.; Swanepoel, P.A. Tillage practices affect weeds differently in monoculture vs. crop rotation. Soil Tillage Res. 2021, 205, 104795. [Google Scholar] [CrossRef]
- Shahzad, M.; Jabran, K.; Hussain, M.; Raza, M.A.S.; Wijaya, L.; El-Sheikh, M.A.; Alyemeni, M.N. The impact of different weed management strategies on weed flora of wheat-based cropping systems. PLoS ONE 2021, 16, e0247137. [Google Scholar] [CrossRef] [PubMed]
- Jabran, K.; Farooq, M.; Hussain, M.; Hafeez-Ur-Rehman; Ali, M. Wild oat (Avena Fatua L.) and canary grass (Phalaris minor Ritz.) management through allelopathy. J. Plant Prot. Res. 2010, 50, 41–44. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 383–411. [Google Scholar]
- Rhoades, J.D. Cation exchange capacity. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 149–157. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Carson, P.L. Recommended potassium test. Bull. Dep. Agric. Econ. ND Agric. Exp. Stn. ND State Univ. Agric. Appl. Sci. 1975, 2, 17–18. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Iqbal, M.; Ahmad, R. Response of wheat varieties and some rabi weeds to allelopathic effects of sorghum water extract. Int. J. Agric. Biol. 2002, 4, 52–55. [Google Scholar]
- Jinn, J.H. SPSS Statistics for Windows, Version 20; IBM Corporation: Armonk, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Rasmussen, I.A. The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res. 2004. [Google Scholar] [CrossRef]
- Naeem, M.; Mehboob, N.; Farooq, M.; Farooq, S.; Hussain, S.; Ali, H.M.; Hussain, M. Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth under Conventional and Conservation Tillage Systems. Agronomy 2021, 11, 8. [Google Scholar] [CrossRef]
- Ugen, M.A.; Wien, H.C.; Wortmann, C.S. Dry bean competitiveness with annual weeds as affected by soil nutrient availability. Weed Sci. 2002, 50, 530–535. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Khaliq, A.; Abbas, M.; Farooq, M. Allelopathic potential of sorghum (Sorghum bicolor L. Moench) cultivars for weed management. Allelopath. J. 2007, 20, 167–178. [Google Scholar]
- Farooq, M.; Nawaz, A.; Ahmad, E.; Nadeem, F.; Hussain, M.; Siddique, K.H.M. Using Sorghum to suppress weeds in dry seeded aerobic and puddled transplanted rice. Field Crops Res. 2017, 214, 211–218. [Google Scholar] [CrossRef]
- Jabran, K. Brassicaceae Allelopathy for Weed Control. In Manipulation of Allelopathic Crops for Weed Control; Springer: Cham, Switzerland, 2017; pp. 21–27. [Google Scholar]
- Won, O.J.; Uddin, M.R.; Park, K.W.; Pyon, J.Y.; Park, S.U. Phenolic compounds in sorghum leaf extracts and their effects on weed control. Allelopath. J. 2013, 31, 147. [Google Scholar]
- Shahzad, M.; Farooq, M.; Jabran, K.; Yasir, T.A.; Hussain, M. Influence of Various Tillage Practices on Soil Physical Properties and Wheat Performance in Different Wheat-based Cropping Systems. Int. J. Agric. Biol. 2016, 18, 821–829. [Google Scholar] [CrossRef]
- Salam, M.A.; Alam, M.K.; Rashid, M.H. Effects of different tillage practices and cropping patterns on soil physical properties and crop productivity. J. Trop. Resour. Sustain. Sci. 2013, 1, 51–61. [Google Scholar]
- Horn, R.; Rostek, J. Subsoil compaction processes-state of knowledge. Adv. Geoecology 2000, 32, 44–54. [Google Scholar]
- Lipiec, J.; Hatano, R. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 2003, 116, 107–136. [Google Scholar] [CrossRef]
- Farooq, M.; Nawaz, A. Weed dynamics and productivity of wheat in conventional and conservation rice-based cropping systems. Soil Tillage Res. 2014, 141, 1–9. [Google Scholar] [CrossRef]
Soil Properties | Year | |
---|---|---|
2012–2013 | 2013–2014 | |
Physical Analysis | ||
Sand (%) | 27.0 | 26.0 |
Silt (%) | 53.0 | 54.0 |
Clay (%) | 20.0 | 20.0 |
Textural class | Silty clay | |
Chemical Analysis | ||
pH | 8.35 | 8.42 |
EC (dS m−1) | 3.29 | 3.31 |
Organic matter (%) | 0.54 | 0.59 |
Total nitrogen (%) | 0.03 | 0.03 |
Available phosphorus (ppm) | 8.87 | 8.75 |
Available potassium (ppm) | 180 | 195 |
Weather Element | Years | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean temp(°C) | 2012–2013 | 33.0 | 34.0 | 33.0 | 32.0 | 29.0 | 25.0 | 20.0 | 15.0 | 12.0 | 16.0 | 22.0 | 27.0 |
2013–2014 | 33.0 | 34.0 | 34.0 | 32.0 | 30.0 | 28.0 | 20.0 | 15.0 | 13.0 | 15.0 | 20.0 | 26.0 | |
Relative humidity (%) | 2012–2013 | 56.0 | 61.0 | 67.0 | 74.0 | 83.0 | 72.0 | 84.1 | 83.0 | 80.0 | 87.0 | 76.0 | 61.0 |
2013–2014 | 55.0 | 68.0 | 64.0 | 72.0 | 72.0 | 71.0 | 79.0 | 82.0 | 79.0 | 82.0 | 74.0 | 58.0 | |
Sunshine (hours) | 2012–2013 | 8.5 | 8.2 | 7.8 | 7.0 | 7.0 | 8.3 | 6.1 | 6.1 | 5.6 | 5.7 | 8.0 | 7.7 |
2013–2014 | 9.8 | 8.2 | 7.9 | 7.1 | 8.7 | 7.1 | 5.7 | 4.9 | 5.5 | 6.4 | 7.0 | 6.3 | |
Rainfall (mm) | 2012–2013 | 1.0 | 0.0 | 17.0 | 11.0 | 167 | 3.0 | 0.0 | 4.0 | 0.0 | 73.0 | 17.0 | 1.0 |
2013–2014 | 0.0 | 51.0 | 17.0 | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 33.0 | 7.0 |
Crops | Sowing Date | Cultivar | Seed Rate (kg ha−1) | Fertilizer NPK (kg ha−1) | * P-P (cm) | ** R-R (cm) | Harvesting Time |
---|---|---|---|---|---|---|---|
Year 2012–13 | |||||||
Cotton | 15 May 2012 | MNH-885 (Bt) | 25 | 250-200-0 | 20 | 75 | 30 October 2012 (Last picking) |
Sorghum | 15 June 2012 | JS-2002 | 10 | 100-60-0 | 15 | 60 | 30 October 2012 |
Mungbean | 15 June 2012 | AZRI-Mung 2006 | 20 | 20-60-0 | 10 | 30 | 30 September 2012 |
Rice i. Nursery ii. Transplanting *** | 25 May 2012 25 June 2012 | Basmati-2000 | 0.5 kg per 25 m2 125 m2 nursery ha−1 | - 150-85-67 | - 22.5 | - 22.5 | 30 October 2012 |
Wheat | 15 November 2012 | Punjab-2011 | 125 | 150-100-0 | - | 25 | 15 April 2013 |
Year 2013–14 | |||||||
Cotton | 10 May 2013 | MNH-885 (Bt) | 25 | 250-200-0 | 20 | 75 | 30 October 2013 (Last picking) |
Sorghum | 11 June 2013 | JS-2002 | 10 | 100-60-0 | 15 | 60 | 28 October 2013 |
Mungbean | 11 June 2013 | AZRI-Mung 2006 | 20 | 20-60-0 | 10 | 30 | 28 September 2013 |
Rice i. Nursery ii. Transplanting | 25 May 2013 25 June 2013 | Basmati-2000 | 0.5 kg per 25 m2 125 m2 nursery ha−1 | - 150-85-67 | - 22.5 | - 22.5 | 25 October 2013 |
Wheat | 16 November 2013 | Punjab-2011 | 125 | 150-100-0 | - | 25 | 20 April 2014 |
Species | Common Name | Family | Life Cycle |
---|---|---|---|
Dicotyledonous weed species | |||
Chenopodium murale L. | Fat hen | Amaranthaceae | Annual |
Melilotus indicus (L.) All. | Yellow sweet clover | Leguminosae | Annual |
Rumex obtusifolius L. | Bitter dock | Polygonaceae | Perennial |
Spergula arvensis L. | Corn spurry | Caryophyllaceae | Annual |
Chenopodium album L. | Common goosefoot | Amaranthaceae | Annual |
Monocotyledonous weed species | |||
Polypogon monspeliensis L. Desf. | Winter grass | Poaceae | Annual |
Cynodon dactylon (L.) Pers. | Bermudagrass | Poaceae | Perennial |
Bolboschoenus maritimus (L.) Palla | Salt marsh | Cyperaceae | Perennial |
Phalaris minor Retz. | Little seed canarygrass | Poaceae | Annual |
Alhagi maurorum Medik. | Camelthorn | Fabaceae | Perennial |
Source of Variation | DF | Sum of Squares | Mean Squares | F Value | p Value |
---|---|---|---|---|---|
Weed density | |||||
Year (Y) | 1 | 14,896.19 | 14,896.19 | 3444.14 | <0.0001 |
Crop Rotation (C) | 4 | 50,580.97 | 12,645.24 | 2923.70 | <0.0001 |
Weed Management strategies (W) | 3 | 305,630.01 | 101,876.67 | 23,554.84 | <0.0001 |
Y × C | 4 | 725.46 | 181.36 | 41.93 | <0.0001 |
Y × W | 3 | 9497.54 | 3165.85 | 731.97 | <0.0001 |
C × W | 12 | 80,885.85 | 6740.49 | 1558.46 | <0.0001 |
Y × C × W | 12 | 4422.64 | 368.55 | 85.21 | <0.0001 |
Weed biomass | |||||
Year (Y) | 1 | 3.52 | 3.52 | 102.86 | <0.0001 |
Crop rotation (C) | 4 | 571.88 | 142.97 | 4178.79 | <0.0001 |
Weed management strategies (W) | 3 | 4619.16 | 1539.72 | 45,003.46 | <0.0001 |
Y × C | 4 | 58.63 | 14.66 | 428.44 | <0.0001 |
Y × W | 3 | 29.14 | 9.71 | 283.86 | <0.0001 |
C × W | 12 | 814.60 | 67.88 | 1984.11 | <0.0001 |
Y × C × W | 12 | 93.74 | 7.81 | 228.33 | <0.0001 |
Percent reduction in weed density | |||||
Year (Y) | 1 | 24.41 | 24.41 | 3.45 | 0.0680 |
Crop rotation (C) | 4 | 2944.68 | 736.17 | 104.17 | <0.0001 |
Weed management strategies (W) | 2 | 14,733.72 | 7366.86 | 1042.39 | <0.0001 |
Y × C | 4 | 2165.09 | 541.27 | 76.59 | <0.0001 |
Y × W | 2 | 187.48 | 93.74 | 13.26 | <0.0001 |
C × W | 8 | 1081.37 | 135.17 | 19.13 | <0.0001 |
Y × C × W | 8 | 883.70 | 110.46 | 15.63 | <0.0001 |
Percent reduction in weed biomass | |||||
Year (Y) | 1 | 614.51 | 614.51 | 442.52 | <0.0001 |
Crop rotation (C) | 4 | 1519.69 | 379.92 | 273.59 | <0.0001 |
Weed management strategies (W) | 2 | 8645.12 | 4322.56 | 3112.72 | <0.0001 |
Y × C | 4 | 905.10 | 226.28 | 162.94 | <0.0001 |
Y × W | 2 | 758.19 | 379.10 | 272.99 | <0.0001 |
C × W | 8 | 2215.23 | 276.90 | 199.40 | <0.0001 |
Y × C × W | 8 | 1573.27 | 196.66 | 141.62 | <0.0001 |
Crop Rotations | 2012–2013 | 2013–2014 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weed Free | Weedy Check | False Seedbed | Chemical Control | Allelopathic Water Extracts | Weed Free | Weedy Check | False Seedbed | Chemical Control | Allelopathic Water Extracts | |
Weed density (plants m−2) | ||||||||||
Fallow-wheat | N/A | 235.33 ± 0.33 b | 37.00 ± 1.00 j | 3.33 ± 0.33 n | 56.33 ± 0.33 g | N/A | 201.33 ± 2.60 a | 28.33 ± 1.45 f | 2.67 ± 0.66 jk | 40.00 ± 1.52 e |
Rice-wheat | N/A | 246.00 ± 0.57 a | 29.67 ± 1.20 k | 10.33 ± 0.88 m | 59.33 ±2.60 fg | N/A | 162.33 ± 1.20 b | 28.00 ± 0.54 f | 2.67 ± 0.33 jk | 51.67 ± 0.88 d |
Cotton-wheat | N/A | 114.67 ± 1.66 d | 37.67 ± 1.45 j | 2.67 ± 0.33 n | 46.33 ± 1.45 i | N/A | 86.33 ± 3.17 c | 17.33 ± 0.33 h | 2.67 ± 0.66 jk | 23.33 ± 0.88 g |
Mungbean-wheat | N/A | 126.00 ± 1.00 c | 50.33 ± 0.88 h | 2.33 ± 0.33 n | 60.33 ± 1.76 f | N/A | 87.67 ± 0.33 c | 14.00 ± 0.57 h | 2.33 ± 0.33 jk | 27.33 ± 0.33 fg |
Sorghum-wheat | N/A | 84.67 ± 2.02 e | 22.00 ± 1.52 l | 2.00 ± 0.57 n | 30.00 ± 0.57 k | N/A | 15.67 ± 0.33 h | 5.67 ± 0.33 ij | 2.00 ± 0.57 jk | 9.67 ± 0.88 i |
LSD value at p 0.05 | 3.83 | 4.16 | ||||||||
Weed biomass (g m−2) | ||||||||||
Fallow-wheat | N/A | 22.63 ± 0.58 a | 3.67 ± 0.01 g | 0.90 ± 0.02 k | 6.22 ± 0.05 e | N/A | 29.20 ± 0.11 a | 5.57 ± 0.02 e | 1.27 ± 0.02 i | 6.21 ± 0.01 d |
Rice-wheat | N/A | 22.25 ± 0.14 a | 2.15 ± 0.03 j | 2.82 ± 0.02 i | 3.53 ± 0.03 gh | N/A | 22.09 ± 0.06 b | 3.71 ± 0.02 f | 0.37 ± 0.02 j | 4.07 ± 0.05 f |
Cotton-wheat | N/A | 13.59 ± 0.08 c | 4.19 ± 0.03 g | 1.04 ± 0.03 k | 5.07 ± 0.03 f | N/A | 14.87 ± 0.01 c | 2.98 ± 0.05 h | 0.25 ± 0.02 j | 3.17 ± 0.03 gh |
Mungbean-wheat | N/A | 14.49 ± 0.06 b | 2.92 ± 0.03 hi | 1.03 ± 0.02 k | 9.98 ± 0.06 d | N/A | 14.70 ± 0.04 c | 3.63 ± 0.05 fg | 0.18 ± 0.03 j | 3.82 ± 0.01 f |
Sorghum-wheat | N/A | 9.71 ± 0.03 d | 2.03 ± 0.06 j | 0.64 ± 0.02 kl | 2.38 ± 0.02 ij | N/A | 5.32 ± 0.01 e | 1.41 ± 0.17 i | 0.16 ± 0.01 j | 1.34 ± 0.02i |
LSD value at p 0.05 | 0.66 | 0.47 | ||||||||
Percent reduction in weed density | ||||||||||
Fallow-wheat | N/A | N/A | 84.28 ± 0.40 d | 98.58 ± 1.11 a | 76.06 ± 0.24 e | N/A | N/A | 85.94 ± 0.53 bc | 98.68 ± 0.67 a | 80.11 ± 0.37 cd |
Rice-wheat | N/A | N/A | 87.94 ± 0.14 c | 95.80 ± 0.93 b | 75.88 ± 1.39 e | N/A | N/A | 82.75 ± 0.31 bcd | 98.36 ± 1.09 a | 68.17 ± 0.33 ef |
Cotton-wheat | N/A | N/A | 67.17 ± 0.16 f | 97.68 ± 0.27 ab | 59.61 ± 1.23 h | N/A | N/A | 79.84 ± 1.00 d | 96.85 ± 0.89 a | 72.92 ± 2.91 e |
Mungbean-wheat | N/A | N/A | 60.05 ± 0.48 h | 98.15 ± 0.76 a | 52.11 ± 0.62 i | N/A | N/A | 84.03 ± 0.40 bcd | 97.34 ± 1.17 a | 68.82 ± 3.48 ef |
Sorghum-wheat | N/A | N/A | 74.06 ± 0.34 e | 97.67 ± 0.82 ab | 64.54 ± 0.85 g | N/A | N/A | 65.38 ± 0.20 f | 87.36 ± 0.65 b | 38.19 ± 5.93 g |
LSD value at p 0.05 | 4.34 | |||||||||
Percent reduction in weed biomass | ||||||||||
Fallow-wheat | N/A | N/A | 83.95 ± 0.42 f | 96.02 ± 0.07 a | 72.46 ± 0.15 i | N/A | N/A | 80.90 ± 0.16 cde | 95.65 ± 0.27 b | 78.77 ± 0.20 e |
Rice-wheat | N/A | N/A | 90.32 ± 0.12 d | 87.31 ± 0.07 e | 84.12 ± 0.40 f | N/A | N/A | 83.20 ± 0.08 c | 98.31 ± 0.36 a | 81.56 ± 0.12 cd |
Cotton-wheat | N/A | N/A | 69.19 ± 0.72 j | 92.37 ± 0.27 c | 62.73 ± 0.62 k | N/A | N/A | 79.96 ± 0.09 de | 98.30 ± 0.14 a | 78.71 ± 3.39 e |
Mungbean-wheat | N/A | N/A | 79.85 ± 0.10 g | 92.89 ± 0.33 bc | 31.17 ± 0.24 l | N/A | N/A | 75.31 ± 0.12 f | 98.79 ± 0.18 a | 73.99 ± 0.19 f |
Sorghum-wheat | N/A | N/A | 79.03 ± 0.05 g | 93.34 ± 0.21 b | 75.50 ± 0.10 h | N/A | N/A | 73.53 ± 0.08 f | 96.98 ± 0.34 ab | 74.67 ± 0.44 f |
LSD value at p 0.05 | 1.92 |
Source of Variation | DF | Sum of Squares | Mean Squares | F Value | p Value |
---|---|---|---|---|---|
Number of grains per spike | |||||
Year (Y) | 1 | 56.49 | 56.49 | 43.45 | <0.0001 |
Crop rotation (C) | 4 | 74.23 | 18.56 | 14.27 | <0.0001 |
Weed management strategies (W) | 4 | 776.05 | 194.01 | 149.23 | <0.0001 |
Y × C | 4 | 0.79 | 0.20 | 0.15 | 0.9614 |
Y × W | 4 | 26.77 | 6.69 | 5.15 | 0.0008 |
C × W | 16 | 10.81 | 0.68 | 0.52 | 0.9315 |
Y × C × W | 16 | 53.56 | 3.35 | 2.57 | 0.0022 |
1000-grain weight | |||||
Year (Y) | 1 | 1.50 | 1.50 | 3.18 | 0.008 |
Crop rotation (C) | 4 | 20.07 | 5.02 | 10.66 | <0.0001 |
Weed management strategies (W) | 4 | 212.56 | 53.14 | 112.85 | <0.0001 |
Y × C | 4 | 2.38 | 0.60 | 1.26 | 0.29 |
Y × W | 4 | 1.45 | 0.36 | 0.77 | 0.55 |
C × W | 16 | 8.28 | 0.52 | 1.10 | 0.37 |
Y × C × W | 16 | 5.26 | 0.33 | 0.70 | 0.009 |
Grain yield | |||||
Year (Y) | 1 | 0.05 | 0.05 | 1.00 | 0.0032 |
Crop rotation (C) | 4 | 3.44 | 0.86 | 18.55 | <0.0001 |
Weed management strategies (W) | 4 | 14.57 | 3.64 | 78.60 | <0.0001 |
Y × C | 4 | 0.04 | 0.01 | 0.24 | 0.92 |
Y × W | 4 | 0.25 | 0.06 | 1.37 | 0.25 |
C × W | 16 | 0.60 | 0.04 | 0.81 | 0.67 |
Y × C × W | 16 | 0.36 | 0.02 | 0.48 | 0.005 |
Cropping Rotations | 2012–2013 | 2013–2014 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weed-Free | Weedy Check | False Seedbed | Chemical Control | Allelopathic Water Extracts | Weed Free | Weedy Check | False Seedbed | Chemical Control | Allelopathic Water Extracts | |
Grains per spike | ||||||||||
Fallow-wheat | 58.60 ± 0.94 a | 49.00 ± 0.28 jk | 53.90 ± 0.20 f–h | 55.03 ± 0.42 d–g | 53.47 ± 0.18 gh | 57.40 ± 0.08 b–d | 51.48 ± 0.10 j | 54.32 ± 0.08 gh | 56.29 ± 0.10 c–f | 55.27 ± 0.12 e–g |
Rice-wheat | 57.58 ± 0.74 ab | 48.50 ± 1.25 k | 56.27 ± 0.40 b–d | 57.45 ± 1.08 a–c | 54.90 ± 0.58 d–g | 59.26 ± 1.37 a | 54.66 ± 2.67 f–h | 54.34 ± 0.08 gh | 56.89 ± 0.06 b–e | 55.72 ± 0.04 d–g |
Cotton-wheat | 57.67 ± 0.49 ab | 50.78 ± 0.14 ij | 53.88 ± 0.10 f–h | 55.52 ± 0.14 c–f | 54.23 ± 0.14 e–g | 58.02 ± 0.08 ab | 52.26 ± 0.13 ij | 55.26 ± 0.05 e–g | 57.18 ± 0.06 b–d | 55.88 ± 0.07 d–g |
Mungbean-wheat | 57.88 ± 0.22 ab | 51.10 ± 0.15 i | 54.00 ± 0.37 e–g | 55.97 ± 1.88 b–e | 54.50 ± 0.25 d–g | 58.25 ± 0.24 ab | 52.45 ± 0.10 ij | 55.38 ± 0.16 e–g | 57.65 ± 0.08 a–c | 56.10 ± 0.05 c–f |
Sorghum-wheat | 55.20 ± 1.11 d–g | 48.27± 0.63 k | 51.97 ± 0.26 hi | 55.45 ± 0.86 c–g | 53.67 ± 0.84 f–h | 57.17 ± 0.09 b–d | 51.11 ± 0.07 j | 53.47 ± 0.14 hi | 56.16 ± 0.107 c–f | 53.52 ± 0.49 hi |
LSD (p ≤ 0.05) | 2.01 | 1.68 | ||||||||
1000-grain weight (g) | ||||||||||
Fallow-wheat | 42.09 ± 1.10 c–g | 39.12 ± 0.11 op | 40.41 ± 0.22 j–n | 42.10 ± 0.34 c–f | 41.20 ± 0.45 g–k | 42.69 ± 0.04 b–e | 39.85 ± 0.06 lm | 40.93 ± 0.05 g–l | 42.10 ± 0.34 c–h | 41.20 ± 0.45 f–l |
Rice-wheat | 44.47 ± 0.85 a | 39.57 ± 0.12 n–p | 40.69 ± 0.09 i–m | 42.89 ± 0.40 bc | 41.16 ± 0.31 h–l | 43.29 ± 1.06 a–c | 39.95 ± 0.21 k–m | 40.69 ± 0.09 i–m | 41.89 ± 0.55 d–i | 41.57 ± 0.05 e–j |
Cotton-wheat | 42.75 ± 0.06 b–d | 39.33 ± 0.38 op | 41.31 ± 0.43 f–i | 42.41 ± 0.51 b–e | 41.28 ± 0.39 f–j | 43.72 ± 0.08 ab | 39.97 ± 0.06 k–m | 41.29 ± 0.11 f–k | 42.25 ± 0.04 c–g | 42.01 ± 0.03 c–i |
Mungbean-wheat | 43.30 ± 0.24 b | 39.94 ± 0.13 m–o | 41.44 ± 0.23 f–i | 42.53 ± 0.13 b–d | 41.53 ± 0.17 e–i | 44.05 ± 0.09 a | 40.00 ± 0.10 k–m | 41.46 ± 0.08 e–j | 42.94 ± 0.07 a–d | 41.53 ± 0.17 e–j |
Sorghum-wheat | 42.07 ± 0.32 c–g | 39.00 ± 0.40 p | 40.34 ± 0.08 k–n | 42.00 ± 0.50 d–h | 40.31 ± 1.17 l–n | 42.36 ± 0.04 c–f | 39.38 ± 0.05 m | 40.87 ± 0.07 h–l | 41.97 ± 0.02 c–i | 40.27 ± 0.65 j–m |
LSD (p ≤ 0.05) | 0.90 | 1.36 | ||||||||
Grain yield (t ha−1) | ||||||||||
Fallow-wheat | 6.35 ± 0.27 a–d | 5.43 ± 0.07 jk | 5.57 ± 0.07 h–k | 6.40 ± 0.30 a–c | 5.72 ± 0.04 f–k | 6.52 ± 0.31 ab | 5.54 ± 0.04 jk | 5.69 ± 0.04 g–k | 6.01 ± 0.04 d–g | 5.65 ± 0.04 h–k |
Rice-wheat | 6.43 ± 0.31 a | 5.54 ± 0.05 h–k | 5.71 ± 0.08 f–k | 6.43 ± 0.24 a | 5.77 ± 0.05 f–j | 6.56 ± 0.32 a | 5.61 ± 0.06 i–k | 5.71 ± 0.07 g–k | 6.36 ± 0.23 a–c | 5.76 ± 0.05 f–k |
Cotton-wheat | 6.57 ± 0.16 a | 5.53 ± 0.08 h–k | 5.84 ± 0.07 f–i | 6.25 ± 0.05 a–e | 5.88 ± 0.11 e–h | 6.39 ± a–c | 5.71 ± 0.06 g–k | 5.86 ± 0.05 e–j | 6.21 ± 0.04 b–d | 5.98 ± 0.06 d–g |
Mungbean-wheat | 6.42 ± 0.05 ab | 5.79 ± 0.04 f–j | 5.97 ± 0.06 e–g | 6.45 ± 0.02 a | 6.05 ± 0.06 b–f | 6.67 ± 0.06 a | 5.88 ± 0.06 d–i | 5.98 ± 0.05 d–g | 6.50 ± 0.05 ab | 6.10 ± 0.05 c–e |
Sorghum-wheat | 6.03 ± 0.05 c–f | 5.34 ± 0.05 k | 5.47 ± 0.10 i–k | 6.01 ± 0.04 d–g | 5.63 ± 0.05 g–k | 6.06 ± 0.07 c–f | 5.60 ± 0.11 i–k | 5.50 ± 0.07 k | 5.94 ± 0.04 d–h | 5.63 ± 0.0 h–k |
LSD (p ≤ 0.05) | 0.38 | 0.33 |
Crop Rotations/ Weed Management Strategies | Total Expenditure (US$ ha−1) | Gross Income (US$ ha−1) | Net Income (US$ ha−1) | BCR |
---|---|---|---|---|
Fallow-wheat | ||||
Weed-free | 1065.00 o | 1568.20 n | 503.20 p | 1.47 op |
Weedy-check | 970.50 r | 1400.70 p | 430.20 q | 1.44 p |
False seedbed | 995.70 p | 1438.80 op | 443.20 q | 1.45 p |
Chemical control | 992.50 p | 1561.60 n | 569.10 o | 1.57 n |
Allelopathic water extracts | 979.90 q | 1478.10 o | 498.20 p | 1.51 o |
Rice-wheat | ||||
Weed-free | 1490.10 c | 5341.50 a | 3851.50 b | 3.58 d |
Weedy-check | 1395.60 g | 5187.70 c | 3792.10 c | 3.72 bc |
False seedbed | 1420.80 e | 5232.70 bc | 3812.00 bc | 3.68 c |
Chemical control | 1417.60 e | 5339.60 a | 3922.00 a | 3.77 a |
Allelopathic water extracts | 1405.00 f | 5249.20 b | 3844.20 b | 3.74 ab |
Cotton-wheat | ||||
Weed-free | 1574.00 a | 4119.30 d | 2545.30 e | 2.62 m |
Weedy-check | 1479.50 d | 3934.20 f | 2454.70 g | 2.66 lm |
False seedbed | 1504.70 b | 3991.90 e | 2487.30 fg | 2.65 lm |
Chemical control | 1501.50 b | 4095.70 d | 2594.20 d | 2.73 ij |
Allelopathic water extracts | 1488.90 c | 4002.60 e | 2513.70 ef | 2.69 kl |
Mungbean-wheat | ||||
Weed-free | 1277.20 i | 3469.20 h | 2192.00 jk | 2.72 jk |
Weedy-check | 1182.70 n | 3263.50 m | 2080.80 n | 2.76 h–j |
False seedbed | 1207.90 kl | 3309.80 l | 2101.90 mn | 2.74 ij |
Chemical control | 1204.70 l | 3430.40 hi | 2225.70 ij | 2.85 ef |
Allelopathic water extracts | 1192.20 m | 3330.20 kl | 2138.10 lm | 2.79 gh |
Sorghum-wheat | ||||
Weed-free | 1297.80 h | 3537.30 g | 2239.50 i | 2.73 i–k |
Weedy-check | 1203.30 l | 3361.60 jk | 2158.20 kl | 2.80 gh |
False seedbed | 1228.50 j | 3395.10 ij | 2166.50 kl | 2.76 hi |
Chemical control | 1225.40 j | 3531.20 g | 2305.90 h | 2.88 e |
Allelopathic water extracts | 1212.80 k | 3437.20 hi | 2224.50 ij | 2.83 fg |
LSD value at 5% | 6.51 | 45.50 | 47.05 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, M.; Hussain, M.; Jabran, K.; Farooq, M.; Farooq, S.; Gašparovič, K.; Barboricova, M.; Aljuaid, B.S.; El-Shehawi, A.M.; Zuan, A.T.K. The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy 2021, 11, 2088. https://doi.org/10.3390/agronomy11102088
Shahzad M, Hussain M, Jabran K, Farooq M, Farooq S, Gašparovič K, Barboricova M, Aljuaid BS, El-Shehawi AM, Zuan ATK. The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy. 2021; 11(10):2088. https://doi.org/10.3390/agronomy11102088
Chicago/Turabian StyleShahzad, Muhammad, Mubshar Hussain, Khawar Jabran, Muhammad Farooq, Shahid Farooq, Kristína Gašparovič, Maria Barboricova, Bandar S. Aljuaid, Ahmed M. El-Shehawi, and Ali Tan Kee Zuan. 2021. "The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.)" Agronomy 11, no. 10: 2088. https://doi.org/10.3390/agronomy11102088