Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils
Abstract
:1. Introduction
2. Development of Soil Acidity
Acidic Mineral Soils
3. Clay Mineralogy of Tropical Soils
3.1. Kaolinitic Soils
3.2. Oxidic Soils
3.3. Smectitic Soils
3.4. Allophanic Soils
4. Soil Factors Affecting Nutrient Availability
4.1. Soil Texture
4.2. Soil pH
4.3. Soil Organic Matter
4.4. Soil Cation Exchange Capacity
5. Potassium and Its Importance to Plants
6. Potassium Dynamics in Soil
6.1. Water-Soluble Potassium
6.2. Exchangeable Potassium
6.3. Nonexchangeable Potassium
6.4. Mineral Potassium
6.5. Potassium Fixation
6.6. Loss of Potassium through Leaching
7. Sources and Role of Organic Amendments on Nutrient Availability
7.1. Animal Manures
7.2. Plant Residues
7.3. Compost
7.4. Amending Acid Soils Using Organic Amendments to Improve the K Availability
8. Humic Substances
8.1. Humic Acid
8.2. Fulvic Acid
8.3. Humin
8.4. Humates
8.5. Variability of Chemical Structures in Humic Substances
8.6. Functions of Humic Substances
9. Charcoal and Its Properties
9.1. Amending Soil with Charcoal
9.2. Potential Risks of Using Charcoal as Soil Amendments
10. Wood Ash and Its Properties
10.1. Amending Soil with Wood Ash
10.2. Potential Risks of Using Wood Ash as Soil Amendment
11. Prospects of Co-Applying Charcoal and Wood Ash as Soil Amendments
12. Mechanisms behind Using Charcoal and Wood Ash to Increase Potassium Availability
12.1. Increasing Potassium Sorption Capacity
12.2. Retention of Water to Reduce Mobility of Potassium in Soil
12.3. Improvement Soil pH upon Application of Charcoal and Wood Ash
13. Future Perspectives and Recommendations
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okalebo, J.R.; Othieno, C.O.; Nekesa, A.O.; Ndungu-Magiroi, K.W.; Kifuko-Koech, M.N. Potential for agricultural lime on improved soil health and agricultural production in Kenya. Afr. Crop. Sci. Conf. Proc. 2009, 9, 339–341. [Google Scholar]
- Fageria, N.K.; Slaton, N.A.; Baligar, V.C. Nutrient Management for Improving Lowland Rice Productivity and Sustainability. Adv. Agron. 2003, 80, 63–152. [Google Scholar]
- Usharani, K.V.; Roopashree, K.M.; Naik, D. Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 2019, 8, 1256–1267. [Google Scholar]
- Gunamantha, I.M.; Sudiana, I.K.; Sastrawidana, D.K.; Suryaputra, I.N.G.A.; Oviantari, M.V. The evaluation of soil fertility status of open space in campus area and their suitability for tropical fruits production. J. Soil Sci. Environ. Manag. 2021, 12, 78–85. [Google Scholar] [CrossRef]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Latifah, O.M.A.R.; Ahmed, O.H.; Majid, N.A. Enhancing nutrients use efficiency and grain yield of Zea mays L. cultivated on a tropical acid soil using paddy husk compost and clinoptilolite zeolite. Bulg. J. Agric. Sci. 2017, 23, 418–428. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Maru, A.; Haruna, A.O.; Asap, A.; Majid, N.M.A.; Maikol, N.; Jeffary, A.V. Reducing Acidity of Tropical Acid Soil to Improve Phosphorus Availability and Zea mays L. Productivity through Efficient Use of Chicken Litter Biochar and Triple Superphosphate. Appl. Sci. 2020, 10, 2127. [Google Scholar] [CrossRef] [Green Version]
- Audrey, A.; Haruna, A.O.; Majid, N.M.A.; Maru, A. Amending triple superphosphate with chicken litter biochar improves phosphorus availability. Eurasian J. Soil Sci. 2018, 7, 121–132. [Google Scholar]
- Liu, Z.; Rong, Q.; Zhou, W.; Liang, G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS ONE 2017, 12, e0172767. [Google Scholar] [CrossRef]
- Zaki, M.K.; Komariah, K.; Rahmat, A.; Pujiasmanto, B. Organic amendment and fertilizer effect on soil chemical properties and yield of maize (Zea mays L.) in rainfed condition. Walailak J. Sci. Technol. 2020, 17, 11–17. [Google Scholar] [CrossRef]
- Penido, E.S.; Martins, G.C.; Mendes, T.B.M.; Melo, L.C.A.; do Rosário Guimarães, I.; Guilherme, L.R.G. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol. Environ. Saf. 2019, 172, 326–333. [Google Scholar] [CrossRef]
- Carrier, M.; Hardie, A.G.; Uras, Ü.; Görgens, J.; Knoetze, J.H. Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J. Anal. Appl. Pyrolysis 2012, 96, 24–32. [Google Scholar] [CrossRef]
- Choi, S.K.; Yum, K.W.; Chon, S.U. Effect of Activated Charcoal on Growth of Curcuma longa Linne. Plant Resour. 2003, 6, 175–177. [Google Scholar]
- Yu, X.Y.; Ying, G.G.; Kookana, R.S. Sorption and desorption behaviors of diuron in soils amended with charcoal. J. Agric. Food Chem. 2006, 54, 8545–8550. [Google Scholar] [CrossRef]
- Demeyer, A.; Nkana, J.V.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Mandre, M.; Pärn, H.; Ots, K. Short-term effects of wood ash on the soil and the lignin concentration and growth of Pinus sylvestris L. For. Ecol. Manag. 2006, 223, 349–357. [Google Scholar] [CrossRef]
- Ohno, T. Neutralization of soil acidity and release of phosphorus and potassium by wood ash. J. Environ. Qual. 1992, 21, 433–438. [Google Scholar] [CrossRef]
- Eyre, S.R. Vegetation and Soils: A World Picture; Routledge: Abingdon, UK, 2017. [Google Scholar]
- McGivney, E.; Gustafsson, J.P.; Belyazid, S.; Zetterberg, T.; Löfgren, S. Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model–soil chemistry of three Swedish conifer sites from 1880 to 2080. Soil 2019, 5, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Berger, T.W.; Türtscher, S.; Berger, P.; Lindebner, L. A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods. Environ. Pollut. 2016, 216, 624–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadri, F.; Nazari, A.M.; Ghahreman, A. A review on the cracking, baking and leaching processes of rare earth element concentrates. J. Rare Earths 2017, 35, 739–752. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Evangelou, V.P. Pyrite Oxidation and Its Control; CRC Press: London, UK, 2018. [Google Scholar]
- Jones, D.L.; Dennis, P.G.; Owen, A.G.; Van Hees, P.A.W. Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 2003, 248, 31–41. [Google Scholar] [CrossRef]
- Kumari, A.; Kapoor, K.K.; Kundu, B.S.; Kumari Mehta, R. Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization. Plant Soil Environ. 2008, 54, 72. [Google Scholar] [CrossRef] [Green Version]
- Valentine, A.J.; Benedito, V.A.; Kang, Y. Legume nitrogen fixation and soil abiotic stress: From physiology to genomics and beyond. Annu. Plant Rev. Online 2018, 2018, 207–248. [Google Scholar]
- Sumner, M.E.; Noble, A.D. Soil acidification: The world story. In Handbook of Soil Acidity; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Duarte, I.M.; Gomes, C.S.; Pinho, A.B. Chemical Weathering. Encycl. Eng. Geol. 2018, 2018, 114–120. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2008; pp. 662–710. [Google Scholar]
- Gazey, C. Effects of Soil Acidity; Agriculture and Food Department of Primary Industries and Regional Development Government of Western Australia. 2018. Available online: https://www.agric.wa.gov.au/soil-acidity/effects-soil-acidity?page=0%2C1 (accessed on 22 April 2021).
- Palanivell, P. Organic and Mineral Amendments on Rice (Oryza sativa L.) Yield and Nutrients Recovery Efficiency. Ph.D. Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2016. [Google Scholar]
- Jusop, S.; Ishak, C.F. Weathered Tropical Soils: The Ultisols and Oxisols; UPM Press: Serdang, Malaysia, 2010. [Google Scholar]
- Shamshuddin, J.; Daud, N.W. Classification and management of highly weathered soils in Malaysia for production of plantation crops. In Principles, Application and Assessment in Soil Science; IntechOpen: London, UK, 2011; pp. 75–86. [Google Scholar]
- Uehara, G.; Gillman, G. The Mineralogy, Chemistry, and Physics of Tropical Soils with Variable Charge Clays; Westview Press: Boulder, CO, USA, 1981. [Google Scholar]
- Al-Ani, T.; Sarapää, O. Clay and clay mineralogy. In Physical-Chemical Properties and Industrial Uses; GTK: Espoo, Finland, 2008. [Google Scholar]
- Chorover, J.; Sposito, G. Surface charge characteristics of kaolinitic tropical soils. Geochim. Cosmochim. Acta 1995, 59, 875–884. [Google Scholar] [CrossRef]
- Ma, C.; Eggleton, R.A. Cation exchange capacity of kaolinite. Clays Clay Miner. 1999, 47, 174–180. [Google Scholar]
- Wattel-Koekkoek, E.J.W.; Van Genuchten, P.P.L.; Buurman, P.; Van Lagen, B. Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 2001, 99, 27–49. [Google Scholar] [CrossRef]
- Lal, R.; Hall, G.F.; Miller, F.P. Soil degradation: I. Basic processes. Land Degrad. Dev. 1989, 1, 51–69. [Google Scholar] [CrossRef]
- Melo, V.F.; Singh, B.; Schaefer, C.E.G.R.; Novais, R.F.; Fontes, M.P.F. Chemical and mineralogical properties of kaolinite-rich Brazilian soils. Soil Sci. Soc. Am. J. 2001, 65, 1324–1333. [Google Scholar] [CrossRef]
- Patil, S.; Kumar, K.A. Characterization and classification of soils of west coast of southern Karnataka. J. Indian Soc. Soil Sci. 2014, 62, 408–413. [Google Scholar]
- Miranda-Trevino, J.C.; Coles, C.A. Kaolinite properties, structure and influence of metal retention on pH. Appl. Clay Sci. 2003, 23, 133–139. [Google Scholar] [CrossRef]
- Li, J.Y.; Xu, R.K. Inhibition of acidification of kaolinite and an Alfisol by aluminum oxides through electrical double-layer interaction and coating. Eur. J. Soil Sci. 2013, 64, 110–120. [Google Scholar] [CrossRef]
- Juo, A.S.; Franzluebbers, K. Properties and Management of Oxidic Soils. In Tropical Soils; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA/NRCS; U.S. Government Printing Office: Washington, DC, USA, 2010. [Google Scholar]
- Motavalli, P.P.; Palm, C.A.; Parton, W.J.; Elliott, E.T.; Frey, S.D. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biol. Biochem. 1995, 27, 1589–1599. [Google Scholar] [CrossRef]
- da Costa Severiano, E.; de Oliveira, G.C.; Junior, M.D.S.D.; Curi, N.; de Pinho Costa, K.A.; Carducci, C.E. Preconsolidation pressure, soil water retention characteristics, and texture of Latosols in the Brazilian Cerrado. Soil Res. 2013, 51, 193–202. [Google Scholar] [CrossRef]
- Silva, B.M.; Oliveira, G.C.; Serafim, M.E.; Silva, E.A.; Ferreira, M.M.; Norton, L.D.; Curi, N. Critical soil moisture range for a coffee crop in an oxidic Latosol as affected by soil management. Soil Tillage Res. 2015, 154, 103–113. [Google Scholar] [CrossRef]
- Taylor, R.K.; Smith, T.J. The engineering geology of clay minerals: Swelling, shrinking and mudrock breakdown. Clay Miner. 1986, 21, 235–260. [Google Scholar] [CrossRef]
- Thomas, P.J.; Baker, J.C.; Zelazny, L.W. An expansive soil index for predicting shrink–swell potential. Soil Sci. Soc. Am. J. 2000, 64, 268–274. [Google Scholar] [CrossRef]
- Kariuki, P.C.; Van Der Meer, F.; Verhoef, P.N.W. Cation exchange capacity (CEC) determination from spectroscopy. Int. J. Remote Sens. 2003, 24, 161–167. [Google Scholar] [CrossRef]
- Reid-Soukup, D.A.; Ulery, A.L. Smectites. Soil Mineral. Environ. Appl. 2002, 7, 467–499. [Google Scholar]
- Środoń, J.; MaCarty, D.K. Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements. Clays Clay Miner. 2008, 56, 155–174. [Google Scholar] [CrossRef]
- Borchardt, G. Smectites. Miner. Soil Environ. 1989, 1, 675–727. [Google Scholar]
- Juo, A.S.; Franzluebbers, K. Properties and Management of Smectitic Soils. In Tropical Soils; Oxford University Press: Oxford, UK, 2003. [Google Scholar] [CrossRef]
- Bowers, G.M.; Loring, J.S.; Walter, E.D.; Burton, S.D.; Bowden, M.E.; Hoyt, D.W.; Kirkpatrick, R.J. Influence of smectite structure and hydration on supercritical methane binding and dynamics in smectite pores. J. Phys. Chem. C 2019, 123, 29231–29244. [Google Scholar] [CrossRef]
- Taylor, R.K. Cation exchange in clays and mudrocks by methylene blue. J. Chem. Technol. Biotechnol. Chem. Technol. 1985, 35, 195–207. [Google Scholar] [CrossRef]
- Delmelle, P.; Opfergelt, S.; Cornelis, J.T.; Ping, C.L. Volcanic soils. In The Encyclopedia of Volcanoes; Academic Press: Cambridge, MA, USA, 2015; pp. 1253–1264. [Google Scholar]
- Hewitt, A.; Dymond, J. Survey of New Zealand soil orders. In Cosystem Services in New Zealand—Conditions and Trend; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; Volume 1, pp. 121–131. [Google Scholar]
- Nath, T.N. Soil texture and total organic matter content and its influences on soil water holding capacity of some selected tea growing soils in Sivasagar district of Assam, India. Int. J. Chem. Sci 2014, 12, 1419–1429. [Google Scholar]
- Jones, C.; Jacobsen, J. Plant nutrition and soil fertility. Nutr. Manag. Modul. 2005, 2, 1–11. [Google Scholar]
- Suzuki, S.; Noble, A.D.; Ruaysoongnern, S.; Chinabut, N. Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Res. Manag. 2007, 21, 37–49. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- McCauley, A.; Jones, C.; Jacobsen, J. Basic soil properties. Soil Water Manag. Modul. 2005, 1, 1–12. [Google Scholar]
- Troeh, F.R.; Thompson, L.M. Soils and Soil Fertility; Blackwell: New York, NY, USA, 2005; Volume 489. [Google Scholar]
- Hasbullah. Use of Clinoptilolite Zeolite to Improve Efficiency of Phosphorus Use in Acid Soils. Ph.D. Thesis, University Putra Malaysia, Serdang, Selangor, Malaysia, 2016. [Google Scholar]
- Malvi, U.R. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J. Agric. Sci. 2011, 24, 106–109. [Google Scholar]
- Allison, F.E. Soil Organic Matter and Its Role in Crop Production; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Gleixner, G.; Poirier, N.; Bol, R.; Balesdent, J. Molecular dynamics of organic matter in a cultivated soil. Org. Geochem. 2002, 33, 357–366. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Aprile, F.; Lorandi, R. Evaluation of cation exchange capacity (CEC) in tropical soils using four different analytical methods. J. Agric. Sci. 2012, 4, 278. [Google Scholar] [CrossRef] [Green Version]
- Binkley, D.; Valentine, D.; Wells, C.; Valentine, U. An empirical analysis of the factors contributing to 20-year decrease in soil pH in an old-field plantation of loblolly pine. Biogeochemistry 1989, 8, 39–54. [Google Scholar] [CrossRef]
- Simonsson, M.; Hillier, S.; Öborn, I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma 2009, 151, 109–120. [Google Scholar] [CrossRef]
- Mikkelsen, R. The importance of potassium management for horticultural crops. Indian J. Fertile. 2017, 13, 82–86. [Google Scholar]
- Ganeshamurthy, A.N.; Satisha, G.C.; Patil, P. Potassium nutrition on yield and quality of fruit crops with special emphasis on banana and grapes. Karnataka J. Agric. Sci. 2011, 24, 29–38. [Google Scholar]
- Srinivasarao, C.; Singh, R.N.; Ganeshamurthy, A.N.; Ghansham, S.; Masood, A. Fixation and recovery of added phosphorus and potassium in different soil types of pulse-growing regions of India. Commun. Soil Sci. Plant Anal. 2007, 38, 449–460. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol. Res. 2014, 169, 337–347. [Google Scholar] [CrossRef]
- Kumar, S.; Dhar, S.; Kumar, A.; Kumar, D. Yield and nutrient uptake of maize (Zea mays)-wheat (Triticum aestivum) cropping system as influenced by integrated potassium management. Indian J. Agron. 2015, 60, 511–515. [Google Scholar]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdallah, G. Plant, animal and human nutrition: An intricate relationship. In Regional Expert Consultation on Land Degradation, Plant, Animal and Human Nutrition; The Food and Agriculture Organization (FAO): Damascus, Syria, 2005. [Google Scholar]
- Panaullah, G.M.; Timsina, J.; Saleque, M.A.; Ishaque, M.; Pathan, A.B.M.B.U.; Connor, D.J.; Saha, P.K.; Quayyum, M.A.; Humphreys, E.; Meisner, C.A. Nutrient uptake and apparent balances for rice-wheat sequences. III. Potassium. J. Plant Nutr. 2006, 29, 173–187. [Google Scholar] [CrossRef]
- Andrist Rangel, Y. Quantifying Mineral Sources of Potassium in Agricultural Soils. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2008. [Google Scholar]
- Sparks, D.L. Bioavailability of soil potassium, D-38-D-52. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Jaiswal, D.K.; Verma, J.P.; Prakash, S.; Meena, V.S.; Meena, R.S. Potassium as an important plant nutrient in sustainable agriculture: A state of the art. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–29. [Google Scholar]
- Sumner, M.E. Handbook of Soil Science; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Darunsontaya, T.; Suddhiprakarn, A.; Kheoruenromne, I.; Prakongkep, N.; Gilkes, R.J. The forms and availability to plants of soil potassium as related to mineralogy for upland Oxisols and Ultisols from Thailand. Geoderma 2012, 170, 11–24. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhou, J.M.; Du, C.W.; Chen, X.Q. Potassium fractions in soils as affected by monocalcium phosphate, ammonium sulfate, and potassium chloride application. Pedosphere 2010, 20, 368–377. [Google Scholar] [CrossRef]
- Kundu, M.C.; Hazra, G.C.; Biswas, P.K.; Mondal, S.; Ghosh, G.K. Forms and distribution of potassium in some soils of Hooghly district of West Bengal. J. Crop. Weed 2014, 10, 31–37. [Google Scholar]
- Pavlov, K.V. The assessment of the potassium status of soil by the proportion between different forms of potassium. Eurasian Soil Sci. 2007, 40, 792–794. [Google Scholar] [CrossRef]
- Zeng, Q.; Brown, P.H. Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant Soil 2000, 221, 121–134. [Google Scholar] [CrossRef]
- Sparks, D.L.; Huang, P.M. Physical chemistry of soil potassium. In Potassium in Agriculture; American Society of Agronomy: Madison, WI, USA, 1985; pp. 201–276. [Google Scholar]
- Sparks, D.L. Potassium dynamics in soils. In Advances in Soil Science; Springer: New York, NY, USA, 1987; pp. 1–63. [Google Scholar]
- Kirkman, J.H.; Basker, A.; Surapaneni, A.; MacGregor, A.N. Potassium in the soils of New Zealand—A review. N. Z. J. Agric. Res. 1994, 37, 207–227. [Google Scholar] [CrossRef]
- Parfitt, R.L. Potassium-calcium exchange in some New Zealand soils. Soil Res. 1992, 30, 145–158. [Google Scholar] [CrossRef]
- Huoyan, W.; Cheng, W.; Ting, L.I.; Jianmin, Z.; Xiaoqin, C. Can nonexchangeable potassium be differentiated from structural potassium in soils? Pedosphere 2016, 26, 206–215. [Google Scholar]
- Srinivasarao, C.; Khera, M.S. Effect of exhaustive cropping on various potassium forms. J. Potassium Res. 1994, 10, 109–116. [Google Scholar]
- Rao, C.S.; Prasad, V.B.; Prasad, P.R.K.; Bansav, S.K.; Rao, A.S.; Takkar, P.N. An Assessment of Potassium Reserves and K Desorption in Micaceous Alfisols and Inceptisols Using Conventional Estimates and Electroultrafiltration. J. Indian Soc. Soil Sci. 1997, 45, 44–47. [Google Scholar]
- Metson, A.J. Potassium in New Zealand soils. N. Z. Soil Bur. Sci. Rep. 1980, 38, 207–227. [Google Scholar]
- Rao, C.S.; Rao, A.S.; Rao, K.V.; Venkateswarlu, B.; Singh, A.K. Categorisation of districts based on nonexchangeable potassium: Implications in efficient K fertility management in Indian agriculture. Indian J. Fertile. 2010, 6, 40–54. [Google Scholar]
- Smith, C.W.; Dilday, R.H. Rice: Origin, History, Technology, and Production; Wiley Series in Crop Science; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Schneider, A.; Tesileanu, R.; Charles, R.; Sinaj, S. Kinetics of soil potassium sorption–desorption and fixation. Commun. Soil Sci. Plant Anal. 2013, 44, 837–849. [Google Scholar] [CrossRef]
- Rich, C.I. Mineralogy of soil potassium. In Role of Potassium in Agriculture; American Society of Agronomy: Madison, WI, USA, 1968; pp. 79–108. [Google Scholar]
- Bangar, K. Distribution of Different Forms of Potassium (K) in Surface and Sub-suface Soils of Agriculture College Farm, Indore. Ph.D. Thesis, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya (RVSKVV), Gwalior, MP, India, 2015. [Google Scholar]
- Reddy, K.R.; D’Angelo, E.M.; Harris, W.G. Biogeochemistry of wetlands. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. G89–G119. [Google Scholar]
- Öborn, I.; Andrist-Rangel, Y.; Askekaard, M.; Grant, C.A.; Watson, C.A.; Edwards, A.C. Critical aspects of potassium management in agricultural systems. Soil Use Manag. 2005, 21, 102–112. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’neill, B.; Neves, E.G. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Raju, R.A. Glimpses of Rice Technology; Agrobios: Jodhpur, India, 2003. [Google Scholar]
- Nanda, J.S.; Agrawal, P.K. Rice; Kalyani Publishers: New Delhi, India, 2006. [Google Scholar]
- Jiang, Y.; Yan, J. Effects of land use on hydrochemistry and contamination of Karst groundwater from Nandong underground river system, China. Water Air Soil Pollut. 2010, 210, 123–141. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef] [Green Version]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Munksgaard, N.C.; Lottermoser, B.G. Phosphate amendment of metalliferous tailings, Cannington Ag–Pb–Zn mine, Australia: Implications for the capping of tailings storage facilities. Environ. Earth Sci. 2013, 68, 33–44. [Google Scholar] [CrossRef]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Andersen, D.S.; Pepple, L.M. A county-level assessment of manure nutrient availability relative to crop nutrient capacity in Iowa: Spatial and temporal trends. Trans. ASABE 2017, 60, 1669–1680. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.E.; Amin, M.; Hernández, E.; González, C.J. Effect of compost, farmyard manure and/or chemical fertilizers on potato yield and tuber nutrient content. Biol. Agric. Hortic. 2006, 23, 273–286. [Google Scholar] [CrossRef]
- Otieno, H.M.; Zingore, G.N.C.W.S. Effect of farmyard manure, lime and inorganic fertilizer applications on soil pH, nutrients uptake, growth and nodulation of soybean in acid soils of western Kenya. J. Agric. Sci. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Meek, B.; Graham, L.; Donovan, T. Long-term effects of manure on soil nitrogen, phosphorus, potassium, sodium, organic matter, and water infiltration rate. Soil Sci. Soc. Am. J. 1982, 46, 1014–1019. [Google Scholar] [CrossRef]
- De Ridder, N.; Van Keulen, H. Some aspects of the role of organic matter in sustainable intensified arable farming systems in the West-African semi-arid-tropics (SAT). Fertil. Res. 1990, 26, 299–310. [Google Scholar] [CrossRef]
- Hoffmann, I.; Gerling, D.; Kyiogwom, U.B.; Mané-Bielfeldt, A. Farmers’ management strategies to maintain soil fertility in a remote area in northwest Nigeria. Agric. Ecosyst. Environ. 2001, 86, 263–275. [Google Scholar] [CrossRef]
- Goladi, J.T.; Agbenin, J.O. The cation exchange properties and microbial carbon, nitrogen and phosphorus in savanna Alfisol under continuous cultivation. J. Sci. Food Agric. 1997, 75, 412–418. [Google Scholar] [CrossRef]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.; Adriano, D.; Mahimairaja, S. Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol. 2004, 34, 291–338. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E. Nitrous oxide and methane emissions following application of animal manures to grassland. J. Environ. Qual. 2000, 29, 277–287. [Google Scholar] [CrossRef]
- Qaswar, M.; Yiren, L.; Jing, H.; Kaillou, L.; Mudasir, M.; Zhenzhen, L.; Hongqian, H.; Xianjin, L.; Jianhua, J.; Ahmed, W.; et al. Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. J. Soils Sediments 2020, 20, 2093–2106. [Google Scholar] [CrossRef]
- Paul, K.I.; Black, A.S.; Conyers, M.K. Effect of plant residue return on the development of surface soil pH gradients. Biol. Fertil. Soils 2001, 33, 75–82. [Google Scholar] [CrossRef]
- Lal, R. Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag. 2008, 28, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Raimbault, B.A.; Vyn, T.J. Crop rotation and tillage effects on corn growth and soil structural stability. Agron. J. 1991, 83, 979–985. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Urbanski, S.P.; Atlas, E.L.; Adachi, K.; Buseck, P.R.; Wiedinmyer, C.; Akagi, S.K.; Toohey, D.W.; Wold, C.E. Trace gas and particle emissions from open biomass burning in Mexico. Atmos. Chem. Phys. 2011, 11, 6787–6808. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, R. Ammonia emissions from agricultural operations: Fertilizer. Better Crop 2009, 93, 9–11. [Google Scholar]
- Baggs, E.M.; Rees, R.M.; Smith, K.A.; Vinten, A.J.A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag. 2000, 16, 82–87. [Google Scholar] [CrossRef]
- Benitez, C.; Tejada, M.; Gonzalez, J.L. Kinetics of the mineralization of nitrogen in a pig slurry compost applied to soils. Compos. Sci. Util. 2003, 11, 72–80. [Google Scholar] [CrossRef]
- AyanfeOluwa, O.E.; AdeOluwa, O.O.; Aduramigba-Modupe, V.O. Nutrient release dynamics of an accelerated compost: A case study in an Alfisol and Ultisol. Eurasian J. Soil Sci. 2017, 6, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Litaor, M.I.; Katz, L.; Shenker, M. The influence of compost and zeolite co-addition on the nutrients status and plant growth in intensively cultivated Mediterranean soils. Soil Use Manag. 2017, 33, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Dias, B.O.; Silva, C.A.; Higashikawa, F.S.; Roig, A.; Sánchez-Monedero, M.A. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresour. Technol. 2010, 101, 1239–1246. [Google Scholar] [CrossRef]
- Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manag. Res. 2011, 29, 540–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, X.; Chang, C.; Larney, F.J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting. J. Environ. Qual. 2004, 33, 37–44. [Google Scholar] [CrossRef] [PubMed]
- O’Hallorans, J.M.; Muñoz, M.A.; Márquez, P.E. Chicken manure as an amendment to correct soil acidity and fertility. J. Agric. Univ. Puerto Rico 1997, 81, 1–8. [Google Scholar]
- Rafique, E.; Mahmood-ul-Hassan, M.; Rashid, A.; Chaudhary, M.F. Nutrient balances as affected by integrated nutrient and crop residue management in cotton-wheat system in Aridisols. III. Potassium. J. Plant Nutr. 2012, 35, 633–648. [Google Scholar] [CrossRef]
- Roy, S.; Kashem, M.A.; Osman, K.T. The uptake of phosphorous and potassium of rice as affected by different water and organic manure management. J. Plant Sci. 2018, 6, 31–40. [Google Scholar]
- Kasongo, R.K.; Verdoodt, A.; Kanyankagote, P.; Baert, G.; Ranst, E.V. Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments. Soil Use Manag. 2011, 27, 94–102. [Google Scholar] [CrossRef]
- Meli, S.M.; Baglieri, A.; Porto, M.; Belligno, A.; Gennari, M. Chemical and microbiological aspects of soil amended with citrus pulp. J. Sustain. Agric. 2007, 30, 53–66. [Google Scholar] [CrossRef]
- Meena, M.D.; Biswas, D.R. Phosphorus and potassium transformations in soil amended with enriched compost and chemical fertilizers in a wheat–soybean cropping system. Commun. Soil Sci. Plant Anal. 2014, 45, 624–652. [Google Scholar] [CrossRef]
- Qian, P.; Schoenau, J.J.; King, T.; Japp, M. Effect of repeated manure application on potassium, calcium and magnesium in soil and cereal crops in Saskatchewan. Can. J. Soil Sci. 2005, 85, 397–403. [Google Scholar] [CrossRef]
- Sarker, A.; Kashem, A.; Osman, K.T. Influence of city finished compost and nitrogen, phosphorus and potassium (NPK) fertilizer on yield, nutrient uptake and nutrient use efficiency of radish (Raphanus sativus L.) in an acid soil. Int. J. Agric. Sci. 2012, 2, 315–321. [Google Scholar]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- MacCarthy, P. The principles of humic substances. Soil Sci. 2001, 166, 738–751. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Schaumann, G.E. Soil organic matter beyond molecular structure Part I: Macromolecular and supramolecular characteristics. J. Plant Nutr. Soil Sci. 2006, 169, 145–156. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances. Soil Sci. 2001, 166, 810–832. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005, 39, 9009–9015. [Google Scholar] [CrossRef] [PubMed]
- Pinton, R.; Cesco, S.; Varanini, Z. Role of Humic Substances in the Rhizosphere. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 341–366. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Piccolo, A.; Cozzolino, A.; Conte, P.; Spaccini, R. Polymerization of humic substances by an enzyme-catalyzed oxidative coupling. Naturwissenschaften 2000, 87, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Baldock, J.A.; Broos, K. Handbook of Soil Sciences: Resource Management and Environmental Impacts; Huang, P.M., Li, Y., Sumner, M.E., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Hatcher, P.G. The CHNs of organic geochemistry: Characterization of molecularly uncharacterized non-living organic matter. Mar. Chem. 2004, 92, 5–8. [Google Scholar] [CrossRef]
- Waksman, S.A. Humus: Origin, Chemical Composition and Importance in Nature; Williams and Wilkins: Philadelphia, PA, USA, 1936. [Google Scholar]
- Ghabbour, E.A.; Davies, G.; Davies, G. Humic Substances: Structures, Models and Functions; Royal Society of Chemistry: Cambridge, UK, 2001; p. 273. [Google Scholar]
- Chung, K.H.; Choi, G.S.; Shin, H.S.; Lee, C.W. Vertical distribution and characteristics of soil humic substances affecting radionuclide distribution. J. Environ. Radioact. 2005, 79, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Baglieri, A.; Ioppolo, A.; Negre, M.; Gennari, M. A method for isolating soil organic matter after the extraction of humic and fulvic acids. Org. Geochem. 2007, 38, 140–150. [Google Scholar] [CrossRef]
- Zavarzina, A.G.; Vanifatova, N.G.; Stepanov, A.A. Fractionation of humic acids according to their hydrophobicity, size, and charge-dependent mobility by the salting-out method. Eurasian Soil Sci. 2008, 41, 1294–1301. [Google Scholar] [CrossRef]
- Semenov, V.M.; Tulina, A.S.; Semenova, N.A.; Ivannikova, L.A. Humification and nonhumification pathways of the organic matter stabilization in soil: A review. Eurasian Soil Sci. 2013, 46, 355–368. [Google Scholar] [CrossRef]
- Pettit, R.E. Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Res. 2004, 10, 1–7. [Google Scholar]
- Schulten, H.R.; Leinweber, P. New insights into organic-mineral particles: Composition, properties and models of molecular structure. Biol. Fertil. Soils 2000, 30, 399–432. [Google Scholar] [CrossRef]
- Schulten, H.R. Models of humic structures: Association of humic acids and organic matter in soils and water. In Humic Substances and Chemical Contaminants; American Society of Agronomy: Madison, WI, USA, 2001; pp. 73–87. [Google Scholar]
- Kujawinski, E.B.; Hatcher, P.G.; Freitas, M.A. High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: Improvements and comparisons. Anal. Chem. 2002, 74, 413–419. [Google Scholar] [CrossRef]
- Stenson, A.C.; Landing, W.M.; Marshall, A.G.; Copper, W.T. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem. 2002, 74, 4397–4409. [Google Scholar] [CrossRef] [PubMed]
- Stenson, A.C.; Marshall, A.G.; Copper, W.T. Exact masses and chemical formulas of individual suwannee river fulvic acids from ultrahigh resolution ESI FT-ICR mass spectra. Anal. Chem. 2003, 75, 1275–1284. [Google Scholar] [CrossRef]
- Baldock, J.A.; Oades, J.M.; Waters, A.G.; Peng, X.; Vassallo, A.M.; Wilson, M.A. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13 C NMR spectroscopy. Biogeochemistry 1992, 16, 1–42. [Google Scholar] [CrossRef]
- Novak, J.; Kozler, J.; Janos, P.; Cezíkova, J.; Tokarova, V.; Madronova, L. Humic acids from coals of the North-Bohemian coal field: I. Preparation and characterisation. React. Funct. Polym. 2001, 47, 101–109. [Google Scholar] [CrossRef]
- Eyheraguibel, B.; Silvestre, J.; Morard, P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 2008, 99, 4206–4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beznosikov, V.A.; Lodygin, E.D. Characteristics of the structure of humic substances of podzolic and peaty podzolic gleyey soils. Russ. Agric. Sci. 2009, 35, 103–105. [Google Scholar] [CrossRef]
- Rivero, C.; Chirenje, T.; Ma, L.Q.; Martinez, G. Influence of compost on soil organic matter quality under tropical conditions. Geoderma 2004, 123, 355–361. [Google Scholar] [CrossRef]
- Tan, K.H. Humic Matter in Soil and the Environment: Principles and Controversies; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Kulikova, N.A.; Stepanova, E.V.; Koroleva, O.V. Mitigating activity of humic substances: Direct influence on biota. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Springer: Berlin, Germany, 2005; pp. 285–309. [Google Scholar]
- Calace, N.; Petronio, B.M.; Persia, S.; Pietroletti, M.; Pacioni, D. A new analytical approach for humin determination in sediments and soils. Talanta 2007, 71, 1444–1448. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Mentler, A.; Gerzabek, M.H. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 2007, 170, 522–529. [Google Scholar] [CrossRef]
- Hayes, M.H.; Graham, C.L. Procedures for the isolation and fractionation of humic substances. In Humic Substances; Woodhead Publishing: Sawston, UK, 2000; pp. 91–109. [Google Scholar]
- Illés, E.; Tombácz, E. The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf. A Physicochem. Eng. Asp. 2003, 230, 99–109. [Google Scholar] [CrossRef]
- Gauthier, T.D.; Seitz, W.R.; Grant, C.L. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol. 1987, 21, 243–248. [Google Scholar] [CrossRef]
- Wershaw, R.L. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J. Contam. Hydrol. 1986, 1, 29–45. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Calvin, M. Hydrocarbons via photosynthesis. Int. J. Energy Res. 1977, 1, 299–327. [Google Scholar] [CrossRef]
- Cornejo, J.; Hermosin, M.C. Interaction of humic substances and soil clays. In Humic Substances in Terrestrial Ecosystems; Elsevier: Amsterdam, The Netherlands, 1996; pp. 595–624. [Google Scholar]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO Soils Bulletin 80; FAO: Rome, Italy, 2005. [Google Scholar]
- Bradl, H. Heavy Metals in the Environment: Origin, Interaction and Remediation; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Tipping, E. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, UK, 2002; Volume 12. [Google Scholar]
- Read, P.; Lermit, J. Bio-energy with carbon storage (BECS): A sequential decision approach to the threat of abrupt climate change. Energy 2005, 30, 2654–2671. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Boateng, A.A. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Ind. Eng. Chem. Res. 2007, 46, 8857–8862. [Google Scholar] [CrossRef]
- Amonette, J.E.; Joseph, S. Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management; Routledge: London, UK, 2012; pp. 65–84. [Google Scholar]
- Baldock, J.A.; Smernik, R.J. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 2002, 33, 1093–1109. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Khan, M.A.; Kim, K.W.; Mingzhi, W.; Lim, B.K.; Lee, W.H.; Lee, J.Y. Nutrient-impregnated charcoal: An environmentally friendly slow-release fertilizer. Environmentalist 2008, 28, 231–235. [Google Scholar] [CrossRef]
- de Sousa, Á.M.B.; Soares Santos, R.R.; Gehring, C. Charcoal in Amazonian paddy soil—Nutrient availability, rice growth and methane emissions. J. Plant Nutr. Soil Sci. 2014, 177, 39–47. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions; EUR 24099 EN; European Commission: Brussels, Belgium, 2010; p. 162. [Google Scholar]
- Tan, Z.; Lin, C.S.; Ji, X.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Jones, D.L.; Edwards-Jones, G.; Murphy, D.V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol. Biochem. 2011, 43, 804–813. [Google Scholar] [CrossRef]
- Khorram, M.S.; Zhang, Q.; Lin, D.; Zheng, Y.; Fang, H.; Yu, Y.L. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. 2016, 44, 269–279. [Google Scholar] [CrossRef]
- Kookana, R.S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Soil Res. 2010, 48, 627. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Saleem, M.; Wang, C.X. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. Sci. Total Environ. 2019, 671, 52–58. [Google Scholar] [CrossRef]
- Pitman, R.M. Wood ash use in forestry—A review of the environmental impacts. For. Int. J. For. Res. 2006, 79, 563–588. [Google Scholar] [CrossRef] [Green Version]
- Park, B.B.; Yanai, R.D.; Sahm, J.M.; Lee, D.K.; Abrahamson, L.P. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy 2005, 28, 355–365. [Google Scholar] [CrossRef]
- Etiegni, L.; Campbell, A.G.; Mahler, R.L. Evaluation of wood ash disposal on agricultural land. I. Potential as a soil additive and liming agent. Commun. Soil Sci. Plant Anal. 1991, 22, 243–256. [Google Scholar] [CrossRef]
- Huang, H.; Campbell, A.G.; Folk, R.; Mahler, R.L. Wood ash as a soil additive and liming agent for wheat: Field studies. Commun. Soil Sci. Plant Anal. 1992, 23, 25–33. [Google Scholar] [CrossRef]
- Unger, Y.L.; Fernandez, I.J. The short-term effects of wood-ash amendment on forest soils. Water Air Soil Pollut. 1990, 49, 299–314. [Google Scholar] [CrossRef]
- Ohno, T.; Erich, M.S. Effect of wood ash application on soil pH and soil test nutrient levels. Agric. Ecosyst. Environ. 1990, 32, 223–239. [Google Scholar] [CrossRef]
- Meiwes, K.J. Application of lime and wood ash to decrease acidification of forest soils. Water Air Soil Pollut. 1995, 85, 143–152. [Google Scholar] [CrossRef]
- Kahl, J.S.; Fernandez, I.J.; Rustad, L.E.; Peckenham, J. Threshold application rates of wood ash to an acidic forest soil. Am. Soc. Agron. 1996, 25, 220–227. [Google Scholar] [CrossRef]
- Williams, T.M.; Hollis, C.A.; Smith, B.R. Forest soil and water chemistry following bark boiler bottom ash application. J. Environ. Qual. 1996, 25, 955–961. [Google Scholar] [CrossRef]
- Kopecky, M.J.; Meyers, N.L.; Wasko, W. Using industrial wood ash as a soil amendment. Magnes. Res. 1995, 1, 240–440. [Google Scholar]
- Jacobson, S.; Gustafsson, L. Effects on ground vegetation of the application of wood ash to a Swedish Scots pine stand. Basic Appl. Ecol. 2001, 2, 233–241. [Google Scholar] [CrossRef]
- Lerner, B.R.; Utzinger, J.D. Wood ash as soil liming material. HortScience 1986, 21, 76–78. [Google Scholar]
- Campbell, A.G. Recycling and disposing of wood ash. TAPPI J. 1990, 73, 141–146. [Google Scholar]
- Wiklund, J. Effects of Wood Ash on Soil Fertility and Plant Performance in Southwestern Kenya. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2017. [Google Scholar]
- Clapham, W.M.; Zibilske, L.M. Wood ash as a liming amendment. Commun. Soil Sci. Plant Anal. 1992, 23, 1209–1227. [Google Scholar] [CrossRef]
- Muse, J.K.; Mitchell, C.C. Paper mill boiler ash and lime by-products as soil liming materials. Agron. J. 1995, 87, 432–438. [Google Scholar] [CrossRef]
- Sakthivel, S.R.; Tilley, E.; Udert, K.M. Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Sci. Total Environ. 2012, 419, 68–75. [Google Scholar] [CrossRef]
- Steenari, B.M.; Karlsson, L.G.; Lindqvist, O. Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass Bioenergy 1999, 16, 119–136. [Google Scholar] [CrossRef]
- Scheepers, G.P.; du Toit, B. Potential use of wood ash in South African forestry: A review. South. For. J. For. Sci. 2016, 78, 255–266. [Google Scholar] [CrossRef]
- Chang, A.C.; Lund, L.J.; Page, A.L.; Warneke, J.E. Physical properties of fly ash-amended soils. Am. Soc. Agron. 1977, 6, 267–270. [Google Scholar] [CrossRef]
- Jansone, B.; Samariks, V.; Okmanis, M.; Kļaviņa, D.; Lazdiņa, D. Effect of High Concentrations of Wood Ash on Soil Properties and Development of Young Norway Spruce (Picea abies (L.) Karst) and Scots Pine (Pinus sylvestris L.). Sustainability 2020, 12, 9479. [Google Scholar] [CrossRef]
- Sharifi, M.; Cheema, M.; McVicar, K.; LeBlanc, L.; Fillmore, S. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources. Can. J. Plant Sci. 2013, 93, 1209–1216. [Google Scholar] [CrossRef]
- Baon, J.B. Use of plant derived ash as potassium fertilizer and its effects on soil nutrient status and cocoa growth. J. Trop. Soils 2009, 14, 185–193. [Google Scholar]
- Füzesi, I.; Heil, B.; Kovács, G. Effects of wood ash on the chemical properties of soil and crop vitality in small plot experiments. Acta Silv. Lignaria Hung. 2015, 11, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Anand, A.; Chinnusamy, V.; Dahuja, A.; Basu, S. Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiol. Plant. 2013, 35, 3401–3411. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, N. Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ. 2010, 136, 16–27. [Google Scholar] [CrossRef]
- Ram, L.C.; Masto, R.E. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments. Earth-Sci. Rev. 2014, 128, 52–74. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D.P.; Kumar, N.; Bhargava, S.K.; Barman, S.C. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J. Environ. Biol. 2010, 31, 421–430. [Google Scholar]
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible applications for municipal solid waste fly ash. J. Hazard. Mater. 2003, 96, 201–216. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. CSIRO Land Water Sci. Rep. 2009, 5, 17–31. [Google Scholar]
- Saletnik, B.; Zagula, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and biomass ash as a soil ameliorant: The effect on selected soil properties and yield of Giant Miscanthus (Miscanthus giganteus). Energies 2018, 11, 2535. [Google Scholar] [CrossRef] [Green Version]
- Hale, S.E.; Nurida, N.L.; Mulder, J.; Sørmo, E.; Silvani, L.; Abiven, S.; Joseph, S.; Taherymoosavi, S.; Cornelissen, G. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 2020, 719, 137455. [Google Scholar] [CrossRef]
- Alling, V.; Hale, S.E.; Martinsen, V.; Mulder, J.; Smebye, A.; Breedveld, G.D.; Cornelissen, G. The role of biochar in retaining nutrients in amended tropical soils. J. Plant Nutr. Soil Sci. 2014, 177, 671–680. [Google Scholar] [CrossRef]
- Bieser, J.M.; Thomas, S.C. Biochar and high-carbon wood ash effects on soil and vegetation in a boreal clearcut. Can. J. For. Res. 2019, 49, 1124–1134. [Google Scholar] [CrossRef] [Green Version]
- Masto, R.E.; Ansari, M.A.; George, J.; Selvi, V.A.; Ram, L.C. Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol. Eng. 2013, 58, 314–322. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman Jr, C.U.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P.H.; Alexandre-Franco, M.F.; Gómez-Serrano, V.; Gong, H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 2007, 310, 57–73. [Google Scholar] [CrossRef]
- Mendez, A.; Gomez, A.; Paz-Ferreiro, J.; Gasco, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
- Wann, S.S.; Uehara, G. Surface charge manipulation in constant surface potential soil colloids: II. Effect on solute transport. Soil Sci. Soc. Am. J. 1978, 42, 886–888. [Google Scholar] [CrossRef]
- Nkana, J.V.; Demeyer, A.; Verloo, M.G. Chemical effects of wood ash on plant growth in tropical acid soils. Bioresour. Technol. 1998, 63, 251–260. [Google Scholar] [CrossRef]
- Hart, S.; Luckai, N. Charcoal function and management in boreal ecosystems. J. Appl. Ecol. 2013, 50, 1197–1206. [Google Scholar] [CrossRef]
- Kolb, S.E.; Fermanich, K.J.; Dornbush, M.E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2013, 73, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Cheng, H.; Xu, C.; Sheng, G.D. Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption. Water Res. 2008, 42, 567–574. [Google Scholar] [CrossRef]
- Zinati, G.M.; Li, Y.C.; Bryan, H.H. Utilization of compost increases organic carbon and its humin, humic and fulvic acid fractions in calcareous soil. Compos. Sci. Util. 2001, 9, 156–162. [Google Scholar] [CrossRef]
- Evanylo, G.; Sherony, C.; Spargo, J.; Starner, D.; Brosius, M.; Haering, K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 2008, 127, 50–58. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Davies, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- Gao, X.; Driver, L.E.; Kasin, I.; Masiello, C.A.; Pyle, L.A.; Dugan, B.; Ohlson, M. Effect of environmental exposure on charcoal density and porosity in a boreal forest. Sci. Total Environ. 2017, 592, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobi-city. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. Monogr. 1948, 18, 81–115. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Felipe-Sesé, M.A.; López-Pérez, J.A.; Infantes-Molina, A. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram. Int. 2017, 43, 463–475. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202, 183–191. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Santalla, M.; Omil, B.; Rodríguez-Soalleiro, R.; Merino, A. Effectiveness of wood ash containing charcoal as a fertilizer for a forest plantation in a temperate region. Plant Soil 2011, 346, 63–78. [Google Scholar] [CrossRef]
- Hannam, K.D.; Venier, L.; Hope, E.; McKenney, D.; Allen, D.; Hazlett, P.W. AshNet: Facilitating the use of wood ash as a forest soil amendment in Canada. For. Chron. 2017, 93, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Tran, Q.T.; Maeda, M.; Oshita, K.; Takaoka, M. Phosphorus release from cattle manure ash as soil amendment in laboratory-scale tests. Soil Sci. Plant Nutr. 2017, 63, 369–376. [Google Scholar] [CrossRef]
- Mbah, C.N.; Dada, O.A.; Okoro, T.N.; Ifejimalu, A. Use of Poultry Droppings and Wood Ash as Soil Amendment and its Effect on Soil Properties and Yield of Maize. Int. J. Adv. Sci. Res. Eng. 2018, 4, 74–78. [Google Scholar] [CrossRef]
- Strelko, V., Jr.; Malik, D.J.; Streat, M. Characterisation of the surface of oxidised carbon adsorbents. Carbon 2002, 40, 95–104. [Google Scholar] [CrossRef]
Amendment | Application Rate | Soil Type | Impact on the K Availability | Reference |
---|---|---|---|---|
Chicken manure | 15 t ha−1 | Typic Halpludox |
| O’Hallorans et al. [139] |
Trifolium alexandrinum L. residue | Not stated | Awagat series and (loamy) Shahpur series (silty) | Higher and more immediate plant K uptake in coarse loamy soil compared to fine silty soil | Rafique et al. [140] |
Rice husk | 10 t ha−1 | Inceptisol | pH improved from 5.47 to 7.23, organic carbon increased from 0.43 to 14.48%, and total K improved from 0.42 to 0.47% after rice pot trial | Roy et al. [141] |
Coffee pulp and husk | 5, 10, and 20 t ha−1 | Arenosol | Increased soil pH, exchangeable Ca, Mg, and K by 5 to 7, 2 to 3, and 7 to 14-fold, respectively, whereas reducing Al toxicity | Kasongo et al. [142] |
Citrus pulp residues | 30 and 90 t ha−1 | Sandy loam | Increase soil exchangeable K, other cations, and soil organic matter content | Meli et al. [143] |
Rice straw compost | 5 t ha−1 | Inceptisol | Available K for the amended treatment was 257.2 kg ha−1 compared with conventional practice was 230.9 kg ha−1 | Meena and Biswas [144] |
Swine and cattle manures | 100, 200, and 400 kg total N ha–1 | Cudworth loam | Repeated application of liquid swine and solid cattle manure contributes to increases in extractable soil K, and enhanced K concentration in plants grown on the soils | Qian et al. [145] |
City finished compost | 10, 20, and 40 t ha−1 | Sandy loam |
| Sarker et al. [146] |
Cattle manure | 40 g kg−1 | Silt loam |
| Whalen et al. [147] |
Functional Group | Chemical Structure | Explanation |
---|---|---|
Carboxyl | The hydrogen could be ionized, thus creating a negatively charged site that can attract cations. The single bond of the carbon in the carboxyl group, ties it to an organic structure. | |
Phenolic hydroxyl | The circle of carbon atoms creates a benzene ring, in which the fourth bond of each of the carbon (in the benzene ring) can tie to another part of an organic molecule, hydrogen atom or any other atom/atoms. The H from the hydroxyl of this structure has a small tendency to be ionised and creating a negatively charged site. | |
Amine | Extra hydrogen may attach to the (two) free electrons of the N in amine resulting a positively charged site. Amine group can also react with carboxyl group. Peptide bond can be formed with the removal a water molecule. Peptide bond links amino acids to form proteins. |
Effect of Charcoal on Nutrient Availability | References |
---|---|
NH4+ availability reduced and 35% increase in available K in flooded or anaerobic soil | Barbosa de Sousa et al. [204] |
C and exchangeable K contents increase, NH4+ was retained in the soil, and Al contents reduced | Lehmann et al. [205] |
Improvement in the pH, K availability, and CEC, whereas Ca and Mg decreased | Major et al. [197] |
Although Na, Cu, Ni, and Cd uptake by plant decreased, K, Mg, and Zn increased | Glaser et al. [206] |
Effects of Ash on the K Availability and Soil Properties | Reference |
---|---|
The K content in the soil of the sample plots one year after the application of wood ash increased two to six times in comparison to the control plots, depending on wood ash concentration. | Jansone et al. [235] |
Wood ash treatments enhanced uptake of K+ compared with the control. Potassium uptake increased proportionally with ash application rates. | Sharifi et al. [236] |
Application of plant derived ash increased the availability of K and Mg in soil and K content in plant tissue. Application of ash at 1500 mg K2O improved soil pH to 7.4 within two months after application but reduced afterwards. | Baon et al. [237] |
After the application of wood ash, the P2O5 and K2O content of the soil rose significantly. The treatments also increased the Mg, S, and Zn content in the soil. | Füzesi et al. [238] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramisparam, P.; Ahmed, O.H.; Omar, L.; Ch’ng, H.Y.; Johan, P.D.; Hamidi, N.H. Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils. Agronomy 2021, 11, 2081. https://doi.org/10.3390/agronomy11102081
Paramisparam P, Ahmed OH, Omar L, Ch’ng HY, Johan PD, Hamidi NH. Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils. Agronomy. 2021; 11(10):2081. https://doi.org/10.3390/agronomy11102081
Chicago/Turabian StyleParamisparam, Puvan, Osumanu Haruna Ahmed, Latifah Omar, Huck Ywih Ch’ng, Prisca Divra Johan, and Nur Hidayah Hamidi. 2021. "Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils" Agronomy 11, no. 10: 2081. https://doi.org/10.3390/agronomy11102081
APA StyleParamisparam, P., Ahmed, O. H., Omar, L., Ch’ng, H. Y., Johan, P. D., & Hamidi, N. H. (2021). Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils. Agronomy, 11(10), 2081. https://doi.org/10.3390/agronomy11102081