Spatiotemporal Distribution of Cattle Dung Patches in a Subtropical Soybean-Beef System under Different Grazing Intensities in Winter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samplings and Data Collection
2.3. Statistical Analysis
2.4. Geostatistical Analysis
- (a)
- Spherical model, using:
- (b)
- Exponential model, using:
- (c)
- Gaussian model, using:
3. Results and Discussion
3.1. Dung Deposition at Different Grazing Intensities
3.2. Spatiotemporal Patterns of Dung Distribution
3.3. Implications for Integrated Crop-Livestock Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Estimates and Projection Variants. 2019. Available online: https://population.un.org/wpp2019/ (accessed on 21 December 2019).
- Connor, D.J.; Mínguez, M.I. Evolution not revolution of farming systems will best feed and green the world. Glob. Food Secur. 2012, 1, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Spiegal, S.; Kleinman, P.J.; Endale, D.M.; Bryant, R.B.; Dell, C.; Goslee, S.; Meinen, R.J.; Flynn, K.C.; Baker, J.M.; Browning, D.M.; et al. Manuresheds: Advancing nutrient recycling in US agriculture. Agric. Syst. 2020, 182, 102813. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.J.; Carvalho, P.C.F.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.A.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science 2010, 327, 822–825. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, A.; Carvalho, P.C.F.; Anghinoni, I.; Lustosa, S.B.C.; Costa, S.E.V.G.A.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Carvalho, P.C.F.; Peterson, C.A.; Nunes, P.A.A.; Martins, A.P.; de Souza Filho, W.; Bertolazi, V.T.; Kunrath, T.R.; de Moraes, A.; Anghinoni, I. Animal production and soil characteristics from integrated crop-livestock systems: Toward sustainable intensification. J. Anim. Sci. 2018, 96, 3513–3525. [Google Scholar] [CrossRef]
- Ryschawy, J.; Choisis, N.; Choisis, J.P.; Joannon, A.; Gibon, A. Mixed crop-livestock systems: An economic and environmental-friendly way of farming? Animal 2012, 6, 1722–1730. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.P.; Anghinoni, I.; Costa, S.E.V.G.A.; Carlos, F.S.; Nichel, G.H.; Silva, R.A.P.; Carvalho, P.C.F. Amelioration of soil acidity and soybean yield after surface lime reapplication to a long-term no-till integrated crop-livestock system under varying grazing intensities. Soil Tillage Res. 2014, 144, 141–149. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Schuster, M.Z.; Pelissari, A.; de Moraes, A.; Harrison, S.K.; Sulc, R.M.; Lustosa, S.B.; Anghinoni, I.; Carvalho, P.C.F. Grazing intensities affect weed seedling emergence and the seed bank in an integrated crop–livestock system. Agric. Ecosyst. Environ. 2016, 232, 232–239. [Google Scholar] [CrossRef]
- Devendra, C.; Thomas, D. Smallholder farming systems in Asia. Agric. Syst. 2002, 71, 17–25. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Nutrient cycling and soil fertility in the grazed pasture system. Adv. Agron. 1993, 49, 119–199. [Google Scholar]
- Whitehead, D.C. Nutrient Elements in Grassland; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Haynes, R.; Williams, P. Influence of stock camping behaviour on the soil microbiological and biochemical properties of grazed pastoral soils. Biol. Fertil. Soils 1999, 28, 253–258. [Google Scholar] [CrossRef]
- Schjoerring, J.K.; Cakmak, I.; White, P.J. Plant nutrition and soil fertility: Synergies for acquiring global green growth and sustainable development. Plant Soil 2019, 434, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Welling, G.R.; Miller, E.T. Cattle use of foothills rangeland near dehydrated molasses supplement. J. Range Manag. 2001, 54, 338–347. [Google Scholar] [CrossRef]
- Tate, K.W.; Atwill, E.R.; Mcdougald, N.K.; George, M.R. Spatial and temporal patterns of cattle feces deposition on rangeland. J. Range Manag. 2003, 56, 432–438. [Google Scholar] [CrossRef]
- Peterson, P.R.; Gerrish, J.R. Grazing systems and spatial distribution of nutrients in pastures: Livestock management considerations. In Nutrient Cycling in Forage Systems; Roberts, C.A., Ed.; PPI/FAR: Columbia, MO, USA, 1996; pp. 203–212. [Google Scholar]
- Schnyder, H.; Locher, F.; Auwerswald, K. Nutrient redistribution by grazing cattle drives patterns of topsoil N and P stocks in a low-input pasture ecosystem. Nutr. Cycl. Agroecosyst. 2010, 88, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.D.; Amado, T.J.C.; Bredemeier, C.; Bremm, C.; Anghinoni, I.; Carvalho, P.C.F. Pasture grazing intensity and presence or absence of cattle dung input and its relationships to soybean nutrition and yield in integrated crop–livestock systems under no-till. Eur. J. Agron. 2014, 57, 84–91. [Google Scholar] [CrossRef]
- Coughenour, M.B. Spatial components of plant–herbivore interactions in pastoral, ranching, and native ungulate ecosystems. J. Range Manag. 1991, 44, 530–542. [Google Scholar] [CrossRef] [Green Version]
- Waldrip, H.M.; Pagliari, P.H.; He, Z. Animal Manure: Production, Characteristics, Environmental Concerns and Management; ASA Special Publication 67; ASA and SSSA: Madison, WI, USA, 2020; p. 430. [Google Scholar]
- Baggio, C.; Carvalho, P.C.F.; Silva, J.L.S.; Anghinoni, I.; Lopes, M.L.T.; Thurow, J.M. Displacement patterns and herbage capture by steers in Italian ryegrass and black oat pastures managed under different heights in integrated crop-livestock system. Rev. Bras. Zootec. 2009, 38, 215–222. [Google Scholar] [CrossRef] [Green Version]
- de Souza Filho, W.; Nunes, P.A.A.; Barro, R.S.; Kunrath, T.R.; de Almeida, G.M.; Genro, T.C.M.; Bayer, C.; Carvalho, P.C.F. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts. J. Clean. Prod. 2019, 213, 968–975. [Google Scholar] [CrossRef]
- Martins, A.P.; Cecagno, D.; Borin, J.B.M.; Arnuti, F.; Lochmann, S.H.; Anghinoni, I.; Bissani, C.A.; Bayer, C.; Carvalho, P.C.F. Long-, medium- and short-term dynamics of soil acidity in an integrated crop–livestock system under different grazing intensities. Nutr. Cycl. Agroecosyst. 2016, 104, 67–77. [Google Scholar] [CrossRef]
- INMET-National Institute of Meteorology. Monitoramento das Estações Automáticas. 2010. Available online: http://www.inmet.gov.br (accessed on 2 December 2019).
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA Natural Resource Conservation Service Agriculture Handbook; USDA: Washington, DC, USA, 1999; p. 871. [Google Scholar]
- Barthram, G.T. Experimental techniques—The HFRO sward stick. Biennial Hill Farming Research Organisation (1984–85). In Hill Farming Research Organisation; Allcock, M.M., Ed.; Penicuik: Midlothian, UK, 1986; pp. 29–30. [Google Scholar]
- Mott, G.O.; Lucas, H.L. The design, conduct and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the VI International Grassland Congress, State College, PA, USA, 17–23 August 1952; pp. 1380–1385. [Google Scholar]
- Braz, S.P.; Nascimento, D., Jr.; Cantarutti, R.B.; Regazzi, A.J.; Martins, C.E.; Fonseca, D.M.; Barbosa, R.A. Quantitative aspects of nutrients recycling in the feces of bovines grazing a pasture of Brachiaria decumbens in the Zona da Mata region of Minas Gerais. Rev. Bras. Zootec. 2002, 31, 858–865. [Google Scholar] [CrossRef]
- Petersen, R.G.; Lucas, H.L.; Woodhouse, W.W., Jr. The distribution of excreta by freely grazing cattle and its effects on pasture fertility: I. Excretal distribution. Agron. J. 1956, 48, 440–443. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows, Version 9.2; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Hirata, M.; Sugimoto, Y.; Ueno, M. Use of a mathematical model to evaluate the effects of dung from grazing animals on pasture production and utilization and animal production. Jpn. J. Grassl. Sci. 1991, 37, 303–323. [Google Scholar] [CrossRef]
- Auerswald, K.; Mayer, F.; Schnyder, H. Coupling of spatial and temporal pattern of cattle excreta patches on a low intensity pasture. Nutr. Cycl. Agroecosyst. 2010, 88, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Longley, P.A.; Maguire, D.J.; Goodchild, M.F.; Rhind, D.W. Sistemas e Ciência da Informação Geográfica, 3rd ed.; Bookman: Porto Alegre, Brasil, 2013. [Google Scholar]
- Yamamoto, J.K.; Landim, P.M.B. Geoestatística: Conceitos e Aplicações; Oficina de Textos: São Paulo, Brasil, 2013. [Google Scholar]
- Thiessen, A.H.; Alter, J.C. Climatological Data for July 1911: District No. 10, Great Basin. Mon. Weather Rev. 1911, 31, 1082–1089. [Google Scholar]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Journel, A.G.; Huibregts, C.H.J. Mining Geostatistics; Academic Press: London, UK, 1978. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Cressie, N.A.C. Statistics for Spatial Data; John Wiley and Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Sadler, E.J.; Busscher, W.J.; Bauer, P.J.; Karlen, D.L. Spatial scale requirements for precision farming: A case study in the southeastern USA. Agron. J. 1998, 90, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.P. GS+: Geostatistics for the Environmental Sciences—GS+ User’s Guide; Gamma Design Soffware: Plainwell, MI, USA, 2008. [Google Scholar]
- Landim, P.M.P. Análise Estatística de Dados Geológicos; Fundação Editora da UNESP: São Paulo, Brasil, 1998. [Google Scholar]
- Braz, S.P.; Nascimento, J.R.D.; Cantarutti, R.B.; Martins, C.E.; Fonseca, D.M.; Barbosa, R.A. Characterization of bovine feces spatial distribution in a Brachiaria decumbens pasture. Rev. Bras. Zootec. 2003, 32, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Penning, P.D. Animal-based techniques for estimating herbage intake. In Herbage Intake Handbook; Penning, P.D., Ed.; The British Grassland Society: Reading, UK, 2004; pp. 53–94. [Google Scholar]
- During, C.; Weeda, W.C. Some effects of cattle dung on soil properties, pasture production, and nutrient uptake. N. Z. J. Agric. Res. 1973, 16, 423–430. [Google Scholar] [CrossRef]
- Medica, D.L.; Hanaway, M.J.; Ralston, S.L.; Sukhdeo, M.V.K. Grazing behavior of horses on pasture: Predisposition to strongylid infection? J. Equine Vet. Sci. 1996, 16, 421–427. [Google Scholar] [CrossRef]
- Vieira, S.R.; Hatfield, J.L.; Nielsen, D.R.; Biggar, J.W. Geostatistical theory and applications to variability of some agronomical properties. Hilgardia 1983, 51, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.O.; Lana, A.M.Q.; Lana, R.M.Q.; Guimarães, E.C.; Ferreira, C.V. Spatial variability of soil chemical attributes in areas managed under conventional tillage. Rev. Bras. Ciências Solo 2007, 31, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Gaston, L.A.; Vendramini, J.M.B.; Interrante, S.M.; Stewart, R.L., Jr. Animal behavior and soil nutrient redistribution in continuously stocked pensacola bahiagrass pastures managed at different intensities. Crop Sci. 2009, 49, 1503–1510. [Google Scholar] [CrossRef]
- Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Vendramini, J.M.B.; Interrante, S.M.; Lira, M.A., Jr. Stocking method, animal behavior, and soil nutrient redistribution: How are they linked? Crop Sci. 2014, 54, 2341–2350. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A.; Schomber, H.H. Spatial distribution of soil carbon and nitrogen pools under grazed tall fescue. Soil Sci. Soc. Am. J. 2000, 64, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Hirata, M.; Sugimoto, Y.; Ueno, M. Distributions of dung paths and ungrazed areas in Bahiagrass (Paspalum notatum Flügge) pasture. Jpn. J. Grassl. Sci. 1987, 33, 128–139. [Google Scholar]
- Nunes, P.A.A.; Bredemeier, C.; Bremm, C.; Caetano, L.A.M.; de Almeida, G.M.; de Souza Filho, W.; Anghinoni, I.; Carvalho, P.C.F. Grazing intensity determines pasture spatial heterogeneity and productivity in an integrated crop-livestock system. Grassl. Sci. 2019, 65, 49–59. [Google Scholar] [CrossRef]
- Kunrath, T.R.; Nunes, P.A.A.; de Souza Filho, W.; Cadenazzi, M.; Bremm, C.; Martins, A.P.; Carvalho, P.C.F. Sward height determines pasture production and animal performance in a long-term soybean-beef cattle integrated system. Agric. Syst. 2020, 177, 102716. [Google Scholar] [CrossRef]
- Chávez, L.F.; Escobar, L.F.; Anghinoni, I.; Carvalho, P.C.F.; Meurer, E.J. Diversidade metabólica e atividade microbiana no solo em sistema de integração lavoura-pecuária sob intensidades de pastejo. Pesqui. Agropecuária Bras. 2011, 46, 1254–1261. [Google Scholar]
- Assmann, J.M.; Anghinoni, I.; Martins, A.P.; Costa, S.E.V.G.A.; Cecagno, D.; Carlos, F.S.; Carvalho, P.C.F. Soil carbon and nitrogen stocks and fractions in a long-term integrated crop-livestock system under no-tillage in southern Brazil. Agric. Ecosyst. Environ. 2014, 190, 52–59. [Google Scholar] [CrossRef]
Sward Height (m) | Sampling | Sampling Date | Number of Animals |
---|---|---|---|
0.1 | 1 | 28 July | 7 |
2 | 14 August | 6.4 | |
3 | 27 August | 4.1 | |
4 | 19 September | 3 | |
5 | 09 October | 3 | |
6 | 28 October | 3 | |
0.2 | 1 | 02 August | 6 |
2 | 14 August | 4 | |
3 | 28 August | 3.3 | |
4 | 20 September | 3 | |
5 | 10 October | 3 | |
6 | 29 October | 3 | |
0.3 | 1 | 29 July | 5 |
2 | 10 August | 3.8 | |
3 | 31 August | 3 | |
4 | 25 September | 3 | |
5 | 12 October | 3 | |
6 | 01 November | 3 | |
0.4 | 1 | 26 July | 4 |
2 | 09 August | 3.6 | |
3 | 26 August | 3 | |
4 | 18 September | 3 | |
5 | 11 October | 3 | |
6 | 31 October | 3 |
Sward Height (m) | Variable | Sampling Date | Total | Mean | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
0.1 | Dung patches per animal per day | 5 | 6 | 11 | 8 | 6 | 8 | 7 | |
Total | 746 | 810 | 601 | 579 | 360 | 439 | 3535 | 590 | |
0.2 | Dung patches per animal per day | 9 | 9 | 12 | 8 | 5 | 10 | 9 | |
Total | 1483 | 419 | 571 | 546 | 318 | 566 | 3903 | 651 | |
0.3 | Dung patches per animal per day | 12 | 4 | 10 | 8 | 6 | 6 | 8 | |
Total | 1326 | 524 | 626 | 583 | 301 | 374 | 3734 | 622 | |
0.4 | Dung patches per animal per day | 6 | 8 | 9 | 7 | 6 | 4 | 7 | |
Total | 462 | 380 | 469 | 527 | 377 | 252 | 2467 | 411 |
Sward Height (m) | Sampling Date | Model | Co † | Co + C1 ‡ | DSD § | Range (m) |
---|---|---|---|---|---|---|
0.10 | 28 July | Exponential | 0.1 | 167.6 | 0.999 | 19.1 |
14 August | Spherical | 14.4 | 135.7 | 0.894 | 43.6 | |
27 August | Spherical | 0.1 | 178.1 | 0.999 | 25.1 | |
19 September | Exponential | 21.7 | 180.8 | 0.880 | 17.3 | |
09 October | Exponential | 1.0 | 794.3 | 0.999 | 25.9 | |
28 October | Exponential | 78.0 | 674.3 | 0.884 | 40.8 | |
Overall | Exponential | 1.2 | 5.3 | 0.688 | 51.5 | |
0.20 | 02 August | Spherical | 41.4 | 151.9 | 0.725 | 44.0 |
14 August | Spherical | 1.0 | 1197.0 | 0.999 | 55.2 | |
28 August | Spherical | 81.0 | 424.0 | 0.809 | 55.5 | |
20 September | Exponential | 16.1 | 311.8 | 0.948 | 10.7 | |
10 October | Exponential | 226.0 | 1495.0 | 0.851 | 35.4 | |
29 October | Spherical | 16.0 | 457.2 | 0.965 | 29.5 | |
Overall | Spherical | 2.2 | 7.1 | 0.687 | 39.6 | |
0.30 | 29 July | Gaussian | 6.0 | 278.6 | 0.976 | 23.1 |
10 August | Exponential | 21.0 | 1233.0 | 0.982 | 30.0 | |
31 August | Gaussian | 62.0 | 1649.0 | 0.962 | 29.4 | |
25 September | Exponential | 74.0 | 1311.0 | 0.943 | 50.3 | |
12 October | Gaussian | 140.0 | 5075.0 | 0.976 | 20.5 | |
01 November | Spherical | 10.0 | 4762.0 | 0.998 | 79.4 | |
Overall | Spherical | 0.01 | 26.4 | 0.999 | 55.7 | |
0.40 | 26 July | Gaussian | 100.0 | 66,300.0 | 0.998 | 46.5 |
09 August | Gaussian | 10.0 | 14,420.0 | 0.999 | 47.0 | |
26 August | Gaussian | 10.0 | 19,550.0 | 0.999 | 37.6 | |
18 September | Gaussian | 10.0 | 12,980.0 | 0.999 | 39.2 | |
11 October | Spherical | 10.0 | 15,930.0 | 0.999 | 90.1 | |
31 October | Gaussian | 100.0 | 48,680.0 | 0.998 | 58.6 | |
Overall | Gaussian | 1.0 | 556.9 | 0.999 | 95.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D. da Silva, F.; de A. Nunes, P.A.; Bredemeier, C.; Cadenazzi, M.; P. Amaral, L.; M. Pfeifer, F.; Anghinoni, I.; Carvalho, P.C.d.F. Spatiotemporal Distribution of Cattle Dung Patches in a Subtropical Soybean-Beef System under Different Grazing Intensities in Winter. Agronomy 2020, 10, 1423. https://doi.org/10.3390/agronomy10091423
D. da Silva F, de A. Nunes PA, Bredemeier C, Cadenazzi M, P. Amaral L, M. Pfeifer F, Anghinoni I, Carvalho PCdF. Spatiotemporal Distribution of Cattle Dung Patches in a Subtropical Soybean-Beef System under Different Grazing Intensities in Winter. Agronomy. 2020; 10(9):1423. https://doi.org/10.3390/agronomy10091423
Chicago/Turabian StyleD. da Silva, Francine, Pedro A. de A. Nunes, Christian Bredemeier, Monica Cadenazzi, Lúcio P. Amaral, Fernando M. Pfeifer, Ibanor Anghinoni, and Paulo C. de F. Carvalho. 2020. "Spatiotemporal Distribution of Cattle Dung Patches in a Subtropical Soybean-Beef System under Different Grazing Intensities in Winter" Agronomy 10, no. 9: 1423. https://doi.org/10.3390/agronomy10091423
APA StyleD. da Silva, F., de A. Nunes, P. A., Bredemeier, C., Cadenazzi, M., P. Amaral, L., M. Pfeifer, F., Anghinoni, I., & Carvalho, P. C. d. F. (2020). Spatiotemporal Distribution of Cattle Dung Patches in a Subtropical Soybean-Beef System under Different Grazing Intensities in Winter. Agronomy, 10(9), 1423. https://doi.org/10.3390/agronomy10091423