Potentially Toxic Element Content in Arid Agricultural Soils in South Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Collection and Sample Characterisation
2.3. Determination of Pollution Indices
2.4. Data Analysis
3. Results and Discussion
3.1. Soil Physicochemical Properties and PTE Levels in Studied Soils
3.2. Assessment of Potentially Toxic Elements Pollution
3.3. Multivariate Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, S.S.; Liao, Q.L.; Hua, M.; Wu, X.M.; Bi, K.S.; Yan, C.Y.; Zhang, X.Y. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 2017, 67, 2148–2155. [Google Scholar] [CrossRef]
- Huo, X.N.; Li, H.; Sun, D.F.; Zhou, L.D.; Li, B.G. Multi-scale spatial structure of heavy metals in agricultural soils in Beijing. Environ. Monit. Assess. 2010, 164, 605–616. [Google Scholar]
- Rodríguez-Martín, J.A.; Ramos-Miras, J.J.; Boluda, R.; Gil, C. Spatial relations of heavy metals in arable and green house soils of a Mediterranean environment region (Spain). Geoderma 2013, 200–201, 180–188. [Google Scholar] [CrossRef]
- Benhaddya, M.L.; Hadjel, M. Spatial distribution and contamination assessment of heavy metals in surface soils of HassiMessaoud, Algeria. Environ. Earth Sci. 2014, 71, 1473–1486. [Google Scholar] [CrossRef]
- Ullah, Z.; Naz, A.; Saddique, U.; Khan, A.; Shah, W.; Muhammad, S. Potentially toxic elements concentrations and human health risk assessment of food crops in Bajaur Agency, Pakistan. Environ. Earth Sci. 2017, 76, 482. [Google Scholar] [CrossRef]
- Muhammad, S.; Ullah, R.; Jadoon, I.A.K. Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. Microchem. J. 2019, 149, 103971. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Khalifa, M.; Gad, A. Assessment of Heavy Metals Contamination in Agricultural Soil of Southwestern Nile Delta, Egypt. Soil Sediment Contam. 2018, 27, 619–642. [Google Scholar] [CrossRef]
- Moghtaderi, T.; Mahmoudi, S.; Shakeri, A.; Masihabadi, M.H. Heavy metals contamination and human health risk assessment in soils of an industrial area, Bandar Abbas–South Central Iran. Hum. Ecol. Risk Assess. 2018, 24, 1058–1073. [Google Scholar] [CrossRef]
- Moghtaderi, T.; Mahmodi, S.; Shakeri, A.; Masihabadi, M.H. Contamination evaluation, health and ecological risk index assessment of potential toxic elements in the surface soils (case study: Central Part of Bandar Abbas County). J. Soil Water Conserv. 2019, 8, 51–65. [Google Scholar]
- Moghtaderi, T.; Aminiyan, M.M.; Alamdar, R.; Moghtaderi, M. Index-based evaluation of pollution characteristics and health risk of potentially toxic metals in schools dust of Shiraz megacity, SW Iran. Hum. Ecol. Risk Assess. 2019, 25, 410–437. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Doabi, S.; Karami, M.; Afyuni, M. Heavy metal pollution assessment in agricultural soils of Kermanshah province, Iran. Environ. Earth Sci. 2019, 78, 70. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Abbasi, S.; Moore, F.; Mehravar, S.; Sorooshian, A.; Soltani, N.; Najmeddin, A. Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ. Manag. 2018, 62, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, B.; Kermanib, M.N.; Bordbar, M.H. Rain Gauge Station Network Design for Hormozgan Province in Iran. Desert 2013, 18, 45–52. [Google Scholar]
- Dadras, M.; Shafri, H.Z.; Ahmad, N.; Pradhan, B.; Safarpour, S. Spatio-temporal analysis of urban growth from remote sensing data in Bandar Abbas city, Iran. Egypt. J. Remote Sens. Space Sci. 2015, 18, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis; Klute, A., Ed.; SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Gaudette, H.E.; Flight, W.R.; Toner, L.; Folger, D.W. An inexpensive titration method for the determination of organic carbon in recent sediments. J. Sediment. Petrol. 1974, 44, 249–253. [Google Scholar]
- Hendershot, W.H.; Duquette, M. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 1986, 50, 605–608. [Google Scholar] [CrossRef]
- Krzysztof, L.; Wiechula, D.; Korns, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wang, J.; Chen, L.; Ling, Z.; Han, J.; Li, Q.; Wang, Q. Distribution, Source Identification, and Assessment of Potentially Toxic Elements in the Sediment Core from the Estuarine Region of the Golmud River to the Qarhan Salt Lake, Qinghai, China. Minerals 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Abrahim, G.M.S. Holocene Sediments of Tamaki Estuary. Characterization and Impact of Recent Human Activity on an Urban Estuary in Auckland, New Zealand. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2005; p. 361. Available online: http://hdl.handle.net/2292/1419 (accessed on 2 April 2020).
- Shakeri, A.; Moore, F.; Modabberi, S. Heavy metal contamination and distribution in the Shiraz Industrial Complex Zone soil, South Shiraz, Iran. World Appl. Sci. J. 2009, 6, 413–425. [Google Scholar]
- Tang, R.; Ma, K.; Zhang, Y.; Mao, Q. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Appl. Geochem. 2013, 35, 88–98. [Google Scholar] [CrossRef]
- Paramasivam, K.; Ramasamy, V.; Suresh, G. Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 397–407. [Google Scholar] [CrossRef]
- Shakeri, A.; Shakeri, R.; Mehrabi, B. Contamination, toxicity and risk assessment of heavy metals and metalloids in sediments of Shahid Rajaie Dam, Sefidrood and Shirinrood Rivers, Iran. Environ. Earth Sci. 2016, 75, 679. [Google Scholar] [CrossRef]
- Luo, W.; Lu, Y.; Giesy, J.P.; Wang, T.; Shi, Y.; Wang, G.; Xing, Y. Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environ. Geochem. Health 2007, 29, 459–471. [Google Scholar] [CrossRef]
- Islam, S.; Ahmed, K.; Mamun, H.; Masunaga, S. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ. 2015, 512–513, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Lu, X.W.; Chao, S.G. Level and contamination assessment of environmentally sensitive elements in smaller than 100μm street dust particles from Xining, China. Int. J. Environ. Res. Public Health 2014, 11, 2536–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourennane, H.; Douay, F.; Sterckeman, T.; Villanneau, E.; Ciesielski, H.; King, D.; Baize, D. Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 2010, 157, 165–174. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Andrade, M.L.; Vega, F.A. Origin and spatial distribution of metals in urban soils. J. Soils Sedim. 2017, 17, 1514. [Google Scholar] [CrossRef]
- Hernandez, L.; Probst, A.; Probst, J.L.; Ulrich, E. Heavy metal distribution in some French forest soil, evidence for atmospheric contamination. Sci. Total Environ. 2003, 312, 195–219. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei Aminiyan, M.; Baalousha, M.; Mousavi, R.; Mirzaei Aminiyan, F.; Hosseini, H.; Heydariyan, A. The ecological risk, source identification, and pollution assessment of heavy metals in road dust: A case study in Rafsanjan, SE Iran. Environ. Sci. Pollut. Res. 2018, 25, 13382–13395. [Google Scholar] [CrossRef]
- CCME. Canadian Soil Quality Guidelines for the Protection of Environment and Human Health; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2018. [Google Scholar]
- Esmaeli, A.; Moore, F.; Keshavarzi, B.; Jaafarzadeh, N.; Kermani, M. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena 2014, 121, 88–89. [Google Scholar] [CrossRef]
- Pourang, N.; Noori, A.S. Heavy Metals Contamination in Soil, Surface Water and Groundwater of an Agricultural Area Adjacent to Tehran oil Refinery, Iran. Int. J. Environ. Res. 2014, 8, 871–886. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 41–42. [Google Scholar]
- Mohammadpour, G.A.; Karbassi, A.R.; Baghvand, A. Origin and spatial distribution of metals in agricultural soils. Global J. Environ. Sci. Manag. 2016, 2, 145–156. [Google Scholar]
- Keshavarzi, B.; Moore, F.; Ansari, M.; Rastegari Mehr, M.; Kaabi, H.; Kermani, M. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran. Environ. Monit. Assess. 2015, 187, 4113. [Google Scholar] [CrossRef]
- Rahmanipour, F.; Marziaoli, R.; Bahrami, H.A.; Fereidouni, Z.; Rahimi Bandarabadi, S. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Mirzaei, R.; Teymourzade, S.; Sakizadeh, M.; Ghorbani, H. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses. Environ. Monit. Assess. 2015, 187, 741. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Jorfi, S.; Azarmansuri, A.; Jaafarzadeha, N.; Hosein Mahvi, A.; Darvishi Cheshmeh Soltani, R.; Akbari, H.; Akhbarizadeh, R. Zoning of heavy metal concentrations including Cd, Pb and As in agricultural soils of Aghili plain, Khuzestan province, Iran. Data Brief 2017, 14, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gou, X.; Wang, G.; Zhang, Q.; Su, Q.; Xiao, G. Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China. J. Environ. Sci. 2008, 20, 607–612. [Google Scholar] [CrossRef]
- Kouchou, A.; El Ghachtouli, N.; Duplay, J.; Ghazi, M.; Elsass, F.; Thoisy, J.C.; Bellarbi, M.; Ijjaali, M.; Rais, N. Evaluation of the environmental and human health risk related to metallic contamination in agricultural soils in the Mediterranean semi-arid area (Saiss plain, Morocco). Environ. Earth Sci. 2020, 79, 131. [Google Scholar] [CrossRef]
- Carkovic, A.B.; Calcagni, M.S.; Vega, A.S.; Coquery, M.; Moya, P.M.; Bonilla, C.A.; Pastén, P.A. Active and legacy mining in an arid urban environment: Challenges and perspectives for Copiapó, Northern Chile. Environ. Geochem. Health 2016, 38, 1001–1014. [Google Scholar] [CrossRef]
- Yang, P.; Mao, R.; Shao, H.; Gao, Y. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. J. Hazard Mater. 2009, 167, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Micó, C.; Peris, M.; Sánchez, J.; Recatalá, L. Heavy metal content of agricultural soils in a Mediterranean semiarid area: The Segura River Valley (Alicante, Spain). Span. J. Agric. Res. 2006, 4, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Peris, M.; Recatalá, L.; Micó, C.; Sánchez, R.; Sánchez, J. Increasing the Knowledge of Heavy Metal Contents and Sources in Agricultural Soils of the European Mediterranean Region. Water Air Soil Pollut. 2008, 192, 25–37. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador-lagoon, Morocco. Ecol. Indic. 2014, 48, 616–626. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast Chin. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Manta, D.D.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Martinez-Martinez, S. Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environ. Monit. Assess. 2010, 169, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; Li, L.-.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Harzard. Mat. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Cheraghi, M.; Lorestani, B.; Merrikhpour, H. Investigation of the Effects of Phosphate Fertilizer Application on the Heavy Metal Content in Agricultural Soils with Different Cultivation Patterns. Biol. Trace Elem. Res. 2012, 145, 87. [Google Scholar] [CrossRef]
- Lugon-Moulin, N.; Ryan, L.; Donini, P.; Rossi, L. Cadmium content of phosphate fertilizers used for tobacco. Agron Sustain. Dev. 2006, 26, 151–155. [Google Scholar] [CrossRef]
Parameter | Units | Minimum | Maximum | Average | Standard Deviation | Skewness | Kurtosis | Coefficient of Variation | IEQS | CSQG | WMS | Background |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | - | 7.3 | 8.45 | 7.73 | 0.33 | 0.61 | −0.34 | 4.25 | - | - | ||
Organic Carbon | % | Bdl | 1.13 | 0.42 | 0.35 | 0.85 | −0.03 | 82.51 | - | - | ||
CEC | meq 100g−1 | 5.4 | 15.63 | 8.73 | 2.71 | 0.85 | 0.67 | 0.29 | ||||
Sand | % | 14 | 80 | 43.53 | 18.79 | 0.27 | −0.42 | 43.16 | - | - | ||
Silt | 12 | 68 | 42.05 | 17.89 | −0.10 | −1.21 | 42.54 | - | - | |||
Clay | 8 | 20 | 14.42 | 3.86 | −0.18 | −0.86 | 26.79 | - | - | |||
Al | mg·kg−1 | 18,156 | 36,702 | 26,516 | 5424 | 0.37 | −0.7 | 20.46 | 80,000 | 2800 | ||
As | 4.4 | 8.8 | 6.53 | 1.28 | −0.06 | −0.94 | 19.58 | - | 12 | 4.7 | 7.65 | |
Cd | 0.07 | 0.34 | 0.15 | 0.07 | 1.67 | 3.08 | 43 | - | 1.4 | 1.1 | 0.17 | |
Co | 9.2 | 25.55 | 14.64 | 4.19 | 1.01 | 0.99 | 28.63 | - | 40 | 6.9 | 10.64 | |
Cr | 61 | 237 | 126.68 | 50.86 | 0.61 | −0.37 | 40.15 | 110 | 64 | 42 | 74.5 | |
Cu | 14.8 | 39.05 | 24.39 | 7.02 | 0.55 | −0.68 | 28.77 | 200 | 63 | 14 | 30.89 | |
Fe | 21,790 | 40,180 | 30,746 | 5463 | 0.06 | −0.66 | 17.77 | - | - | 47,200 | 40,857 | |
Mn | 509 | 886 | 694.71 | 115.82 | −0.04 | −1.25 | 16.67 | - | - | 418 | 879.70 | |
Mo | 0.7 | 1.35 | 0.96 | 0.25 | 0.52 | −1.5 | 25.64 | - | 5 | 1.8 | 1.06 | |
Ni | 65 | 299.5 | 125.32 | 57.07 | 1.65 | 3.74 | 45.54 | 110 | 45 | 18 | 77 | |
P | 412 | 88 | 629.43 | 141.88 | 0.23 | −0.91 | 22.54 | - | - | - | ||
Pb | 6.2 | 13.5 | 8.8 | 2 | 1.29 | 1.32 | 22.75 | - | 70 | 25 | 10.8 | |
Sc | 6 | 14 | 9.58 | 2.46 | 0.37 | −0.89 | 25.65 | - | - | 9.5 | 10.08 | |
V | 58.5 | 118 | 87.03 | 18.37 | 0.13 | −0.98 | 21.1 | - | 130 | 60 | 98.08 | |
Zn | 35.2 | 60.3 | 50.02 | 7.46 | −0.68 | −0.26 | 14.92 | 500 | 250 | 62 | 65.09 |
Location | Soil Type | n | Al | As | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | P | Pb | Sb | V | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bandar Abbas, Southern Iran | AGS | 19 | 26,516 | 6.53 | 0.15 | 14.64 | 126.68 | 24.39 | 30,746 | 694.71 | 0.96 | 125.32 | 629.43 | 8.8 | - | 87.03 | 50.02 | This study |
Granada and Almeria provinces, South-East of Spain | AGS | 142 | - | - | 0.4 | - | 29.6 | 25.7 | - | - | - | 26.9 | 13.6 | 25.6 | - | - | 65.7 | [3] |
Kermanshah province, Western Iran | AGS | 53 | - | - | - | - | 79.21 | 41.21 | 25,936 | 559.06 | - | 131.46 | - | - | - | - | 74.62 | [13] |
Hamedan Province, Western Iran | AGS | 58 | - | - | - | - | - | - | 37,690 | 403.37 | - | 21.98 | - | 2.43 | - | - | [43] | |
Teheran area, Northwestern Iran | AGS | 141 | - | - | - | - | 87.15 | - | - | 665.06 | - | 43.60 | - | 35.08 | - | 67.14 | 130.36 | [41] |
Industrial area Isfahan, Center Iran | AGS | 105 | 53,000 | - | 0.43 | 14.7 | 85.9 | 35.7 | 28,000 | 649.9 | - | 66.2 | - | 34.6 | - | - | 111.5 | [40] |
Isfahan Province, Center Iran | AGS | 114 | - | - | - | - | - | 35.28 | 35,600 | - | - | - | 3750 | 32.14 | - | - | 100.96 | [44] |
Qazvin Province, North-West Iran | AGS | 71 | - | - | 0.14 | 18.9 | 34.5 | - | - | - | - | - | - | 17.36 | - | - | - | [45] |
Semnan Province, Northern Iran | AGS | 47 | - | - | 0.3 | - | 83.7 | 24.3 | - | - | - | 33.3 | - | 18.1 | - | - | 80.4 | [46] |
Aghili plain, Khuzestan province, Western Iran | AGS | 55 | - | 2.81 | 0.29 | - | - | - | - | - | - | - | - | 6.12 | - | - | - | [47] |
Gansu Province, China | AGS | 5 | - | 8.8 | - | - | 40.1 | 17.1 | - | - | - | - | - | 23.30 | - | - | - | [48] |
Gansu Province, China | AGS-i | 13 | - | 11.17 | - | - | 38.82 | 27.2 | - | - | - | - | - | 21.44 | - | - | - | [48] |
Saiss plain, Northern Morocco | AGS-i | - | - | - | - | 78 | 55 | - | - | - | 31 | - | - | - | - | 119 | [49] | |
Copiapó, Northern Chile | AGS | 7 | - | 32.1 | - | 13.3 | - | 209 | 21,180 | 1049 | - | - | - | 50.4 | - | - | 176 | [50] |
Hebei Province, Eastern China | AGS | 100 | - | 6.16 | 0.15 | - | 57.77 | 21.22 | - | - | - | 25.04 | - | 18.80 | - | - | 69.96 | [51] |
Alicante province, Eastern Spain | AGS | 29 | - | - | 0.38 | 7.9 | 28.3 | 21.6 | 15,274 | 320 | - | 23.7 | - | 19.6 | - | - | 57.8 | [52] |
Castellón province, Eastern Spain | AGS | 77 | - | - | 0.32 | 7.7 | 33.3 | 36.6 | 16,915 | 385 | 19.5 | 55.8 | 78.5 | [53] |
Degree of Ecological Risk of Each Element | Potential Ecological Risk Index | ||||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cr | Cu | Ni | Pb | Zn | ||
Maximum | 13.47 | 101.73 | 8.72 | 6.90 | 9.58 | 20.45 | 9.60 | 1.21 | 156.22 |
Mean | 10.00 | 41.71 | 5.00 | 3.71 | 5.98 | 9.06 | 5.60 | 1.00 | 82.05 |
Minimum | 6.73 | 13.96 | 3.14 | 1.64 | 3.63 | 4.22 | 3.52 | 0.70 | 156.22 |
Sc | Cd | Cr | Cu | Fe | Ni | Zn | Al | Co | Mn | Mo | V | As_ | Pb | CEC | pH | OC | Sand | Silt | Clay | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | 1 | |||||||||||||||||||
Cd | 0.65 | 1 | ||||||||||||||||||
Cr | 0.66 | −0.65 | 1 | |||||||||||||||||
Cu | 0.88 | −0.56 | 0.51 | 1 | ||||||||||||||||
Fe | 0.96 | −0.59 | 0.69 | 0.87 | 1 | |||||||||||||||
Ni | 0.86 | −0.58 | 0.79 | 0.76 | 0.83 | 1 | ||||||||||||||
Zn | 0.60 | NC | NC | 0.64 | 0.66 | 0.46 | 1 | |||||||||||||
Al | 0.87 | NC | NC | 0.84 | 0.86 | 0.75 | 0.78 | 1 | ||||||||||||
Co | 0.95 | −0.6 | 0.74 | 0.87 | 0.93 | 0.94 | 0.59 | 0.86 | 1 | |||||||||||
Mn | 0.67 | −0.46 | 0.61 | 0.76 | 0.76 | 0.55 | NC | 0.51 | 0.62 | 1 | ||||||||||
Mo | −0.84 | 0.72 | −0.75 | −0.638 | −0.81 | −0.72 | NC | −0.63 | 0.76 | −0.52 | 1 | |||||||||
V | 0.95 | −0.68 | 0.73 | 0.82 | 0.96 | 0.77 | 0.519 | 0.76 | 0.88 | 0.67 | −0.88 | 1 | ||||||||
As | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | 1 | |||||||
Pb | NC | 0.63 | −0.55 | NC | NC | NC | NC | NC | NC | NC | NC | −0.46 | NC | 1 | ||||||
CEC | 0.51 | −0.61 | 0.46 | 0.49 | NC | 0.48 | NC | NC | 0.52 | NC | NC | 0.50 | NC | NC | 1 | |||||
pH | NC | NC | 0.52 | NC | NC | NC | NC | NC | NC | 0.62 | NC | 0.51 | NC | NC | NC | 1 | ||||
OC | −0.49 | NC | NC- | −0.58 | −0.48 | NC | NC | −0.53 | −0.47 | −0.55 | NC | NC | NC | NC | NC | NC | 1 | |||
Sand | NC | NC | NC | NC | NC | NC | NC | −0.58 | NC | NC | NC | NC | NC | NC | NC | NC | NC | 1 | ||
Silt | 0.48 | NC | NC | NC | NC | NC | NC | 0.68 | 0.50 | NC | NC | NC | NC | NC | 0.48 | NC | NC | −0.98 | 1 | |
Clay | −0.61 | NC | −0.58 | NC | −0.68 | NC | NC | NC | −0.48 | −0.74 | 0.60 | −0.67 | NC | 0.517 | NC | −0.61 | 0.46 | NC | NC | 1 |
Agricultural Soils | |||
---|---|---|---|
PC1 | PC2 | PC3 | |
Fe | 0.96 | −0.04 | −0.22 |
Co | 0.94 | −0.20 | 0.01 |
Al | 0.94 | 0.10 | 0.24 |
Cu | 0.91 | −0.17 | 0.02 |
V | 0.90 | −0.17 | −0.29 |
Sc | 0.89 | −0.02 | −0.19 |
Mo | −0.78 | 0.11 | 0.31 |
Zn | 0.72 | 0.43 | 0.14 |
Mn | 0.70 | −0.15 | −0.45 |
Cr | 0.64 | 0.47 | −0.33 |
OC | −0.53 | 0.13 | 0.12 |
P | −0.01 | 0.89 | 0.26 |
Cd | −0.29 | 0.87 | 0.25 |
Ni | 0.02 | 0.65 | −0.02 |
Pb | −0.08 | 0.71 | 0.49 |
CEC | 0.49 | −0.51 | 0.16 |
Clay | −0.53 | −0.05 | 0.78 |
As | 0.19 | 0.23 | 0.76 |
pH | 0.31 | −0.34 | −0.66 |
% of Variance | 42.92 | 19.45 | 14.00 |
Cumulative % | 42.92 | 62.37 | 76.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghtaderi, T.; Shakeri, A.; Rodríguez-Seijo, A. Potentially Toxic Element Content in Arid Agricultural Soils in South Iran. Agronomy 2020, 10, 564. https://doi.org/10.3390/agronomy10040564
Moghtaderi T, Shakeri A, Rodríguez-Seijo A. Potentially Toxic Element Content in Arid Agricultural Soils in South Iran. Agronomy. 2020; 10(4):564. https://doi.org/10.3390/agronomy10040564
Chicago/Turabian StyleMoghtaderi, Tahereh, Ata Shakeri, and Andrés Rodríguez-Seijo. 2020. "Potentially Toxic Element Content in Arid Agricultural Soils in South Iran" Agronomy 10, no. 4: 564. https://doi.org/10.3390/agronomy10040564