Genome-Wide Detection of SNP Markers Associated with Four Physiological Traits in Groundnut (Arachis hypogaea L.) Mini Core Collection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Phenotyping
2.2. DNA Extraction and Genotyping
2.3. Data Analysis
Linkage Disequilibrium and Marker-Trait Association
3. Results
3.1. Phenotypic Evaluation
3.2. Marker Data
3.3. Linkage Disequilibrium
3.4. Marker-Trait Association
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Crops. Food and Agriculture Organization of the United Nations. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 February 2018).
- Padi, F.K. Genotype × Environment Interaction for Yield and Reaction to Leaf Spot Infections in Groundnut in Semiarid West Africa. Euphytica 2008, 164, 143–161. [Google Scholar] [CrossRef]
- Suther, M.S.; Patel, D.M. Yield and Nutrient Absorption by Groundnut and Iron Availability in Soil as Influenced by Lime and Soil Water. J. Indian Soc. Soil Sci. 1992, 40, 594–596. [Google Scholar]
- Singh, A.L.; Chaudhari, V. Macronutrient Requirement of Groundnut: Effects on Growth and Yield Components. Indian J. Plant Physiol. 2006, 11, 40–409. [Google Scholar]
- Price, A.H.; Horton, P.; Jones, H.G.; Griffiths, H.; Cairns, J.E. Linking Drought-Resistance Mechanisms to Drought Avoidance in Upland Rice Using a QTL Approach: Progress and New Opportunities to Integrate Stomatal and Mesophyll Responses. J. Exp. Bot. 2002, 53, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Monyo, E.; Ozias-Akins, P.; Liang, X.; Guimaraes, P.; Nigam, S.N.; Upadhyaya, H.D.; Janila, P.; Zhang, X.; Guo, B.; et al. Advances in Arachis Genomics for Peanut Improvement. Biotechnol. Adv. 2012, 30, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Nageswara Rao, R.C.; Talwar, H.S.; Wright, G.C. Rapid Assessment of Specific Leaf Area and Leaf Nitrogen in Peanut (Arachis hypogaea L.) Using a Chlorophyll Meter. J. Agron. Crop. Sci. 2001, 186, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Luis, J.M.; Ozias-Akins, P.; Holbrook, C.C.; Kemerait, R.C., Jr.; Snider, J.L.; Liakos, V. Phenotyping Peanut Genotypes for Drought Tolerance. Peanut Sci. 2016, 43, 36–48. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, M.A.; Farooq, M.; Ashraf, M.Y.; Cheema, M.A. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop. Sci. 2008, 194, 193–199. [Google Scholar] [CrossRef]
- Pandey, M.K.; Upadhyaya, H.D.; Rathore, A.; Vadez, V.; Sheshshayee, M.S.; Sriswathi, M.; Govil, M.; Kumar, A.; Gowda, M.V.; Sharma, S.; et al. Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the “reference Set” Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World. PLoS ONE 2014, 9, e105228. [Google Scholar] [CrossRef] [Green Version]
- Janila, P.; Venuprasad, R.; Abhishek, R.U.A.; Reddy, K.R.; Waliyar, F.; Nigam, S.N. Genetic Analysis of Resistance to Late Leaf Spot in Interspecific Groundnuts. Euphytica 2013, 193, 13–25. [Google Scholar]
- Varshney, R.K.; Mohan, S.M.; Gaur, P.M.; Gangarao, N.V.; Pandey, M.K.; Bohra, A.; Sawargaonkar, S.L.; Chitikineni, A.; Kimurto, P.K.; Janila, P.; et al. Achievements and Prospects of Genomics-Assisted Breeding in Three Legume Crops of the Semi-Arid Tropics. Biotechnol. Adv. 2013, 31, 1120–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, G.; Clevenger, J.; Pandey, M.K.; Wang, H.; Shasidhar, Y.; Chu, Y.; Fountain, J.C.; Choudhary, D.; Culbreath, A.K.; Liu, X.; et al. High-Density Genetic Map Using Whole-Genome Resequencing for Fine Mapping and Candidate Gene Discovery for Disease Resistance in Peanut. Plant Biotechnol. J. 2018, 16, 1954–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willing, E.M.; Hoffmann, M.; Klein, J.D.; Weigel, D.; Dreyer, C. Paired-End RAD-Seq for de Novo Assembly and Marker Design without Available Reference. Bioinformatics 2011, 27, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaccoud, D.; Peng, K.; Feinstein, D.; Kilian, A. Diversity Arrays: A Solid State Technology for Sequence Information Independent Genotyping. Nucleic Acids Res. 2001, 29, E25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdisser, P.; Pereira, W.J.; Almeida Filho, J.E.; Muller, B.S.F.; Coelho, G.R.C.; de Menezes, I.P.P.; Vianna, J.P.G.; Zucchi, M.I.; Lanna, A.C.; Coelho, A.S.G.; et al. In-Depth Genome Characterization of a Brazilian Common Bean Core Collection Using DArTseq High-Density SNP Genotyping. BMC Genom. 2017, 18, 423. [Google Scholar] [CrossRef] [Green Version]
- Al-Abdallat, A.M.; Karadsheh, A.; Hadadd, N.I.; Akash, M.W.; Ceccarelli, S.; Baum, M.; Hasan, M.; Jighly, A.; Abu Elenein, J.M. Assessment of Genetic Diversity and Yield Performance in Jordanian Barley (Hordeum Vulgare L.) Landraces Grown under Rainfed Conditions. BMC Plant Biol. 2017, 17, 191. [Google Scholar] [CrossRef] [Green Version]
- Abu Zaitoun, S.Y.; Jamous, R.M.; Shtaya, M.J.; Mallah, O.B.; Eid, I.S.; Ali-Shtayeh, M.S. Characterizing Palestinian Snake Melon (Cucumis Melo Var. Flexuosus) Germplasm Diversity and Structure Using SNP and DArTseq Markers. BMC Plant Biol. 2018, 18, 246. [Google Scholar]
- Mousavi-Derazmahalleh, M.; Bayer, P.E.; Hane, J.K.; Valliyodan, B.; Nguyen, H.T.; Nelson, M.N.; Erskine, W.; Varshney, R.K.; Papa, R.; Edwards, D. Adapting Legume Crops to Climate Change Using Genomic Approaches. Plant Cell Environ. 2017, 42, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Edae, E.A.; Byrne, P.F.; Haley, S.D.; Lopes, M.S.; Reynolds, M.P. Genome-Wide Association Mapping of Yield and Yield Components of Spring Wheat under Contrasting Moisture Regimes. Theor. Appl. Genet. 2014, 127, 791–807. [Google Scholar] [CrossRef]
- Sneller, C.H.; Mather, D.E.; Crepieux, S. Analytical Approaches and Population Types for Finding and Utilizing QTL in Complex Plant Populations. Crop Sci. 2009, 49, 363–380. [Google Scholar] [CrossRef]
- Baird, S.J. Exploring Linkage Disequilibrium. Mol. Ecol. Resour. 2015, 15, 1017–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyaya, H.D.; Yadav, D.; Dronavalli, N.; Gowda, C.L.L.; Singh, S. Mini Core Germplasm Collections for Infusing Genetic Diversity in Plant Breeding Programs. Electron. J. Plant Breed. 2010, 1, 1294–1309. [Google Scholar]
- Waliyar, F.; Kumar, K.V.K.; Diallo, M.; Traore, A.; Mangala, U.N.; Upadhyaya, H.D.; Sudini, H. Resistance to Pre-Harvest Aflatoxin Contamination in ICRISAT’s Groundnut Mini Core Collection. Eur. J. Plant Pathol. 2016, 145, 901–913. [Google Scholar] [CrossRef] [Green Version]
- Holbrook, C.C.; Anderson, W.F.; Pittman, R.N. Selection of a Core Collection from the U.S. Germplasm Collection of Peanut. Crop Sci. 1993, 33, 859–861. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Bramel, P.J.; Ortiz, R.; Singh, S. Developing a Mini Core of Peanut for Utilization of Genetic Resources. Crop Sci. 2002, 42, 2150–2156. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, H.D.; Dwivedi, S.L.; Nadaf, H.L.; Singh, S. Phenotypic Diversity and Identification of Wild Arachis Accessions with Useful Agronomic and Nutritional Traits. Euphytica 2011, 182, 103. [Google Scholar] [CrossRef]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. Methods Mol. Biol. 2012, 888, 67–89. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Gangurde, S.S.; Kumar, R.; Pandey, A.K.; Burow, M.; Laza, H.E.; Nayak, S.N.; Guo, B.; Liao, B.; Bhat, R.S.; Madhuri, N.; et al. Climate-Smart Groundnuts for Achieving High Productivity and Improved Quality: Current Status, Challenges, and Opportunities. In Genomic Designing of Climate-Smart Oilseed Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2019; pp. 133–172. [Google Scholar]
- Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Front. Plant Sci. 2016, 7, 1131. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Reynolds, M.P.; Sansaloni, C. Genome-Wide Association Analyses Identify QTL Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield Potential, Drought, and Heat Stress Environments. Front. Plant Sci. 2018, 9, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielen, S.; Vidigal, B.S.; Leal-Bertioli, S.C.; Ratnaparkhe, M.; Paterson, A.H.; Garsmeur, O.; D’Hont, A.; Guimaraes, P.M.; Bertioli, D.J. Matita, a New Retroelement from Peanut: Characterization and Evolutionary Context in the Light of the Arachis A-B Genome Divergence. Mol. Genet. Genom. 2012, 287, 21–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretzsohn, M.C.; Gouvea, E.G.; Inglis, P.W.; Leal-Bertioli, S.C.; Valls, J.F.; Bertioli, D.J. A Study of the Relationships of Cultivated Peanut (Arachis hypogaea) and Its Most Closely Related Wild Species Using Intron Sequences and Microsatellite Markers. Ann. Bot. 2013, 111, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The Genome Sequences of Arachis duranensis and Arachis ipaensis, the Diploid Ancestors of Cultivated Peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Neumann, K.; Denčić, S.; Varshney, R.; Börner, A.; Kobiljski, B. Genome-Wide Association Mapping: A Case Study in Bread Wheat (Triticum aestivum L.). Mol. Breed. 2011, 27, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Mwadzingeni, L.; Shimelis, H.; Rees, D.J.; Tsilo, T.J. Genome-Wide Association Analysis of Agronomic Traits in Wheat under Drought-Stressed and Non-Stressed Conditions. PLoS ONE 2017, 12, e0171692. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.N.; Upadhyaya, H.D.; Chandra, S.; Nageswara Rao, R.C.; Wright, G.C.; Reddy, A.G.S. Gene Effects for Specific Leaf Area and Harvest Index in Three Crosses of Groundnut (Arachis hypogaea). Ann. Appl. Biol. 2001, 139, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Feng, S.; Chen, C.; Guo, Y.; Knapp, S.; Culbreath, A.; He, G.; Wang, M.L.; Zhang, X.; Holbrook, C.C.; et al. An Integrated Genetic Linkage Map of Cultivated Peanut (Arachis hypogaea L.) Constructed from Two RIL Populations. Theor. Appl. Genet. 2012, 124, 653–664. [Google Scholar] [CrossRef]
- Farre, A.; Benito, I.L.; Cistue, L.; de Jong, J.H.; Romagosa, I.; Jansen, J. Linkage Map Construction Involving a Reciprocal Translocation. Theor. Appl. Genet. 2011, 122, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
Effect | df | Canopy Temperature | Leaf Area Index | SPAD Chlorophyll Meter Reading | NDVI |
---|---|---|---|---|---|
Rep (Environment) | 2 | 679.62 | 7.28 | 18.73 | 0.47 |
Environment | 1 | 4820.38 ** | 54.69 ** | 7149.59 ** | 13.81 ** |
Lines | 124 | 7.82 ** | 0.66 | 49.14 ** | 0.43 ** |
Environment × Lines | 124 | 7.69 | 0.49 | 26.09 ** | 0.001 |
Error | 248 | 7.25 | 0.84 | 15.42 | 0.02 |
Heritability | 0.22 | 0.03 | 0.55 | 0.25 |
SPAD Chlorophyll Meter Reading | Leaf Area Index | Canopy Temperature | Normalized Difference Vegetative Index (NDVI) | |
---|---|---|---|---|
SPAD (Soil Plant Analysis Development) chlorophyll reading | ||||
Leaf area index | −0.03 | |||
0.72 | ||||
Canopy temperature | −0.16 | −0.19 | ||
0.08 | 0.03 | |||
NDVI | 0.08 | 0.12 | −0.25 | |
0.37 | 0.19 | 0.01 |
Trait | Marker | Chromosome | Position (Mbp) | p-Value | Marker R2 | Allelic Effect | |
---|---|---|---|---|---|---|---|
Leaf area index | M1 | 100028731 | A03 | 112.30 | 0.0007 | 0.073 | −1.33 |
M1 | 100028731 | B03 | 114.70 | 0.00084 | 0.068 | −1.31 | |
M2 | 100055743 | A06 | 29.59 | 0.00089 | 0.069 | 1.96 | |
M2 | 100055743 | B07 | 39.39 | 0.00083 | 0.068 | 1.97 | |
Canopy temperature | M3 | 100002202 | A02 | 14.18 | 0.00099 | 0.098 | −1.74 |
M3 | 100002202 | B02 | 17.44 | 0.00089 | 0.097 | −1.95 | |
M4 | 100006533 | A03 | 12.02 | 2.06 × 10−5 | 0.166 | −4.27 | |
M4 | 100006533 | B03 | 14.68 | 2.19 × 10−5 | 0.163 | −4.22 | |
M5 | 100057474 | A05 | 4.01 | 0.00017 | 0.128 | −2.86 | |
M5 | 100057474 | B05 | 3.92 | 0.00018 | 0.125 | −2.87 | |
M6 | 100007799 | A05 | 4.75 | 0.00078 | 0.102 | −2.33 | |
M6 | 100007799 | B05 | 4.84 | 0.00046 | 0.109 | −2.56 | |
M7 | 100008002 | A08 | 7.71 | 0.00097 | 0.098 | −2.29 | |
M7 | 100008002 | B07 | 113.51 | 0.00057 | 0.105 | −2.52 | |
M8 | 100007218 | A10 | 78.51 | 0.00069 | 0.104 | −1.51 | |
M8 | 100007218 | B10 | 103.61 | 0.00062 | 0.104 | −1.49 | |
M9 | 100002387 | B01 | 135.56 | 0.00097 | 0.096 | −4.75 | |
SPAD chlorophyll meter reading | M10 | 100000269 | B05 | 17.00 | 0.00099 | 0.208 | −11.65 |
NDVI | M11 | 100118763 | A04 | 67.54 | 0.00069 | 0.070 | 0.16 |
M11 | 100118763 | B02 | 106.74 | 0.001 | 0.066 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaibu, A.S.; Sneller, C.; Motagi, B.N.; Chepkoech, J.; Chepngetich, M.; Miko, Z.L.; Isa, A.M.; Ajeigbe, H.A.; Mohammed, S.G. Genome-Wide Detection of SNP Markers Associated with Four Physiological Traits in Groundnut (Arachis hypogaea L.) Mini Core Collection. Agronomy 2020, 10, 192. https://doi.org/10.3390/agronomy10020192
Shaibu AS, Sneller C, Motagi BN, Chepkoech J, Chepngetich M, Miko ZL, Isa AM, Ajeigbe HA, Mohammed SG. Genome-Wide Detection of SNP Markers Associated with Four Physiological Traits in Groundnut (Arachis hypogaea L.) Mini Core Collection. Agronomy. 2020; 10(2):192. https://doi.org/10.3390/agronomy10020192
Chicago/Turabian StyleShaibu, Abdulwahab S., Clay Sneller, Babu N. Motagi, Jackline Chepkoech, Mercy Chepngetich, Zainab L. Miko, Adamu M. Isa, Hakeem A. Ajeigbe, and Sanusi G. Mohammed. 2020. "Genome-Wide Detection of SNP Markers Associated with Four Physiological Traits in Groundnut (Arachis hypogaea L.) Mini Core Collection" Agronomy 10, no. 2: 192. https://doi.org/10.3390/agronomy10020192
APA StyleShaibu, A. S., Sneller, C., Motagi, B. N., Chepkoech, J., Chepngetich, M., Miko, Z. L., Isa, A. M., Ajeigbe, H. A., & Mohammed, S. G. (2020). Genome-Wide Detection of SNP Markers Associated with Four Physiological Traits in Groundnut (Arachis hypogaea L.) Mini Core Collection. Agronomy, 10(2), 192. https://doi.org/10.3390/agronomy10020192