Approach to Petiole Sap Nutritional Diagnosis Method by Empirical Model Based on Climatic and Growth Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Experimental Design and Parameters Assessed
2.3. Statistical Analysis
3. Results
3.1. Growth Conditions of the Experiment
3.2. Petiole Sap Nutrients, Climatic Parameters, and Nutrients in Soil Solution
3.3. Correlations between Different Diagnostic Methods and Yield
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
ETc | Crop evapotranspiration |
DAT | Days after transplanting |
HPLC | High-performance liquid chromatography |
LAI | Leaf area index |
PAR | Radiation photosynthetically active |
RH | Relative humidity |
SS | Soil solution |
VPD | Vapor pressure deficit |
References
- Jones, J.B.; Wolf, B.; Mills, H.A. Tissue testing. In Plant Analysis Handbook; Micro-Macro Publications: Athens, Greece, 1991; pp. 99–104. [Google Scholar]
- Hochmuth, G.J. Sufficiency ranges for nitrate-nitrogen and potassium for vegetable petiole sap quick tests. HortTechnology 1994, 4, 218–222. [Google Scholar] [CrossRef]
- Smith, D.L. Rockwool in Horticulture; Grower Books: London, UK, 1987; p. 156. [Google Scholar]
- Farneselli, M.; Tei, F.; Simonne, E.H. Reliability of petiole sap test for N nutritional status assessing in processing tomato. J. Plant Nutr. 2014, 37, 270–278. [Google Scholar] [CrossRef]
- Studstill, D.W.; Simonne, E.H.; Hutchinson, C.M.; Hochmuth, R.C.; Dukes, M.D.; Davis, W.E. Petiole sap testing sampling procedures for monitoring pumpkin nutritional status. Commun. Soil Sci. Plant Anal. 2004, 34, 2355–2362. [Google Scholar] [CrossRef]
- Bates, T.E. Factors affecting critical nutrient concentrations in plants and their evaluation: a review. Soil Sci. 1971, 112, 116–130. [Google Scholar] [CrossRef]
- Mills, H.A.; Benton, J.J. Plant. Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro Macro Publisher: Athens, Greece, 1996; p. 422. [Google Scholar]
- Hartz, T.K. The assessment of soil and crop nutrient status in the development of efficient fertilizer recommendations. Acta Hortic. 2003, 627, 231–240. [Google Scholar] [CrossRef]
- Llanderal, A. Study of diagnostic methods and evaluation of nutritional parameters in the intensive horticulture cropping systems as basis for a sustainable management of the fertigation. Ph.D. Thesis, University of Almeria, La Canada, Spain, September 2017. [Google Scholar]
- Ikeda, H. Research reports for national science research foundation for 1992–1994 (Research B); Development of New Nutrition Diagnosis Methods for Horticultural Crops: Tokyo, Japan, 1995. (In Japanese) [Google Scholar]
- Leyva, G.; Sánchez, P.; Alcántar, G.; Valenzuela, J.G.; Gavi, F.; Martínez, Á. Contenido de nitratos en extracto celulares de pecíolos y frutos de tomate. Rev. Fitotec. Mex. 2005, 28, 145–150. [Google Scholar]
- Cadahía, C. Fertirrigación. La savia como índice de fertirrigación en cultivos agroenergéticos, hortícolas, frutales y ornamentales; Mundi-Prensa: Madrid, Spain, 2008; p. 256. [Google Scholar]
- García, M.E.; Azuara, P. Evaluation of the most adequate organ of reference for sap analysis in the tomato plant. Biol. Plant. 1991, 33, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Llanderal, A.; García-Caparrós, P.; Contreras, J.I.; Segura, M.L.; Lao, M.T. Evaluation of the nutrients variability in sap of different petiole samples in tomato plant. Commun. Soil Sci. Plant Anal. 2018, 49, 745–750. [Google Scholar] [CrossRef]
- Urrestarazu, M. Tratado de cultivos sin suelo; Mundi-Prensa: Madrid, Spain, 2004; p. 914. [Google Scholar]
- Lao, M.T. The mulching sandy soil and their management fertigation in horticultural production. Trends Soil Sci. 2004, 3, 71–82. [Google Scholar]
- Medrano, E.; Sánchez-Guerrero, M.A.; Lorenzo, P.; Alonso, F.J. Relaciones hídricas y programación de riego en cultivos hortícolas en sustratos; IFAPA: Escobar Impresores, S.L.: El Ejido, Spain, 2008; p. 88. [Google Scholar]
- Bailey, B.J.; Montero, J.I.; Biel, C.; Wilkinson, D.J.; Anton, A.; Jolliet, O. Transpiration of Ficus benjamina: comparison of measurements with predictions of the Penman–Monteith model and a simplified version. Agric. Forest Meteorol. 1993, 65, 229–243. [Google Scholar] [CrossRef]
- Lao, M.T.; González, J.I.; Jiménez, S. Manual para la gestión del fertirriego en los invernaderos de Almería; Junta de Andalucía Consejo de Agricultura y Pesca: Sevilla, Spain, 2002; p. 30. [Google Scholar]
- Csáky, A.; Martínez-Grau, M.A. Técnicas Experimentales en Síntesis Orgánica; Síntesis: Madrid, Spain, 1998. [Google Scholar]
- Cadahía, C. El análisis de la savia como índice de fertilización. Manuales de la Ciencia actual; CSIC: Madrid, Spain, 1973. [Google Scholar]
- Krom, M.D. Spectrophotometric determination of ammonia: study of a modified Berthelot reaction using salicylate and dicholoroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Hogue, E.; Wilcow, G.E.; Cantliffe, D.J. Effect of soil P on phosphate fraction in tomato leaves. J. Amer. Soc. Hort. Sci. 1970, 95, 174–176. [Google Scholar]
- Lachica, M.; Aguilar, A.; Yañez, J. Análisis foliar: Métodos utilizados en la Estación Experimental del Zaidín. Anal. Edaf. Agrobio. 1973, 32, 1033–1047. [Google Scholar]
- Fernández, M.D.; Orgaz, F.; Fereres, E.; López, J.C.; Céspedes, A.; Pérez, J.; Gallardo, M. Programacion del riego de cultivos horticolas bajo invernadero en el sudeste español. Estacion Experimental Cajamar, 2nd Ed. ed; El Ejido: Almería, Spain, 2005; p. 71. [Google Scholar]
- Baeza, R.; Alonso, F.; Contreras, J.I. Cálculo de la evapotranspiración en cultivo de tomate en invernadero. Utilización de series climáticas históricas vs. a tiempo real. XIV. Congr. Nac. Cienc. Hort. Retos Nueva Agric. Mediterr. 2015, 71, 248–251. [Google Scholar]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.B.; Hodder, A. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2013; p. 616. [Google Scholar]
- Barraza, F.V.; Fischer, G.; Cardona, C.E. Studying the process of tomato crop (Lycopersicon esculentum Mill.) growth in the Middle Sinu Valley, Colombia. Agron. Colom. 2004, 22, 81–90. [Google Scholar]
- Valera, D.M.; Belmonte, L.; Molina, F.D.; López, A. Greenhouse agriculture in Almería: A comprehensive techno-economic analysis; Cajamar, Caja Rural: Almeria, Spain, 2016; p. 408. [Google Scholar]
- Sandri, M.A.; Andriolo, J.L.; Witter, M.; Dal Ross, T. Effect of shading on tomato plants grow under greenhouse. Hortic. Bras. 2003, 21, 642–645. [Google Scholar] [CrossRef] [Green Version]
- Llanderal, A.; García-Caparrós, P.; Contreras, J.I.; Segura, M.L.; Lao, M.T. Testing foliar nutritional changes in space and over time in greenhouse tomato. J. Plant Nutr. 2019, 42, 333–343. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Ronchi, C.P. Critical values of nitrogen indices in tomato plants grown in soil and nutrient solution determined by different statistical procedures. Pesq. Agropec. Bras. 2002, 37, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Llanderal, A.; Lao, M.T.; Contreras, J.I.; Segura, M.L. Diagnosis and recommendation integrated system norms and sufficiency ranges for tomato greenhouse in Mediterranean climate. HortScience 2018, 53, 479–482. [Google Scholar] [CrossRef] [Green Version]
- Casas, A.; Casas, E. Análisis de suelo-agua-planta y su aplicación en la nutrición de cultivos hortícolas en la zona del sureste peninsular; Caja Rural Almería: Almería, Spain, 1999; p. 156. [Google Scholar]
- Armstrong, M.J.; Kirkby, E.A. The influence of humidity on the mineral composition of tomato plants with special reference to calcium distribution. Plant Soil 1979, 52, 427–435. [Google Scholar] [CrossRef]
- Erica, B.; Larsson, C.M.; Larsson, M. Responses of nitrate assimilation and N translocation in tomato (Lycopersicon esculentum Mill) to reduced ambient air humidity. J. Exp. Bot. 1996, 47, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Siebrecht, S.; Herdel, K.; Schurr, U.; Tischner, R. Nutrient translocation in the xylem of poplar diurnal variations and spatial distribution along the shoot axis. Planta 2003, 217, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.; Sinclair, T.R.; Allen, L.H. Transpiration responses to vapor pressure deficit in well-watered ‘slow-wilting’ and conventional soybeans. Environ. Exp. Bot. 2007, 61, 145–151. [Google Scholar] [CrossRef]
- Opstad, N. Mineral concentrations in leaf dry matter and leaf and petiole sap in strawberry depend on leaf age and plant developmental stage. Acta Hortic. 2010, 868, 143–148. [Google Scholar] [CrossRef]
- Chrispeels, M.J.; Crawford, N.M.; Schroeder, J.I. Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell 1999, 11, 661–675. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, W.D.; Pate, J.S. Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. J. Exp. Bot. 1991, 42, 1105–1116. [Google Scholar] [CrossRef]
- Cuartero, J.; Yeo, A.R.; Flowers, T.J. Selection of donors for salt- tolerance in tomato using physiological traits. New Phytol. 1992, 121, 63–69. [Google Scholar] [CrossRef]
- Mourão-Filho, F.D.A.A. DRIS: Concepts and applications on nutritional diagnosis in fruit crops. Sci. Agri. 2004, 61, 550–560. [Google Scholar] [CrossRef]
- Betancourt, P.; Pierre, F. Extraccion de macronutrientes por el cultivo de tomate (Solanum lycopersicum Mill. var. Alba) en casas de cultivo en Quíbor, estado Lara. Bioagro 2013, 25, 181–188. [Google Scholar]
- Bugarín-Montoya, R.; Glavis-Spinola, A.; Sánchez-García, P.; García-Paredes, D. Daily accumulation of aboveground dry matter and potassium in tomato. Terra latinoam. 2002, 20, 401–409. [Google Scholar]
Climatic Parameters | Plant Parameters | ||||||
---|---|---|---|---|---|---|---|
ETc | Rad. | Tª | RH | VPD | LAI | Yield | |
(mm day−1) | (MJ m−2 day−1) | (°C) | (%) | (kPa) | (m2 m-2) | (kg m−2) | |
Min | 1.17 | 8.03 | 10.50 | 71.63 | 0.21 | 4.15 | 7.2 |
Max | 2.43 | 6.63 | 17.14 | 96.78 | 0.53 | 4.63 | 9.4 |
Ave | 1.79 | 4.78 | 14.51 | 85.43 | 0.32 | 4.52 | 7.9 |
Soil Solution (mmol L−1) | |||||||||
pH | EC (dS m−1) | Cl− | NO3− | H2PO4− | Na+ | K+ | Ca2+ | Mg2+ | |
Min | 7.43 | 3.15 | 8.91 | 12.22 | 0.18 | 9.71 | 6.24 | 7.65 | 6.57 |
Max | 7.75 | 4.41 | 10.12 | 23.33 | 0.20 | 11.63 | 13.63 | 8.73 | 8.22 |
Ave | 7.59 | 3.62 | 9.46 | 18.24 | 0.22 | 10.51 | 9.22 | 8.15 | 7.31 |
Petiole Sap (mg L−1) | |||||||||
- | - | Cl− | NO3−-N | H2PO4−-P | Na+ | K+ | Ca2+ | Mg2+ | |
Min | - | - | 1041 | 1037 | 26.33 | 508.9 | 4000 | 486.1 | 1275 |
Max | - | - | 1202 | 1408 | 185.3 | 608.1 | 4869 | 640.9 | 1965 |
Ave | - | - | 1118 | 1247 | 72.83 | 552.2 | 4441 | 552.2 | 1674 |
Leaf (mg g−1 DW) | |||||||||
- | - | Cl | N | P | Na | K | - | - | |
Min | - | - | 6.29 | 33.5 | 3.42 | 4.58 | 46.3 | - | - |
Max | - | - | 6.83 | 39.2 | 5.38 | 7.38 | 54.6 | - | - |
Ave | - | - | 6.54 | 36.3 | 4.27 | 5.81 | 50.8 | - | - |
Parameters | ETc | Rad. | Temp. | RH | VPD | LAI | SS |
---|---|---|---|---|---|---|---|
Cl− | 0.88* | −0.06 | −0.29 | −0.30 | 0.83* | −0.84* | −0.15 |
NO3−−N | 0.85* | −0.61* | −0.32 | −0.20 | 0.80* | −0.84* | 0.68* |
H2PO4−-P | 0.87* | 0.32 | 0.25 | 0.18 | 0.75* | −0.74* | 0.06 |
Na+ | 0.68* | 0.05 | 0.30 | 0.06 | 0.53* | −0.69* | 0.11 |
K+ | 0.65* | 0.27 | 0.24 | 0.38 | 0.63* | −0.52* | −0.21 |
Ca2+ | 0.85* | −0.31 | −0.34 | −0.69* | 0.87* | 0.79* | 0.12 |
Mg2+ | 0.82* | −0.33 | 0.25 | −0.24 | 0.75* | 0.91* | 0.13 |
Lag | Equation | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Petiole sap | Cl− | 0.11 | −0.18 | −0.11 | −0.24 | y = 0.1523x + 939.25 |
NO3−-N | 0.79* | 0.55 | 0.30 | −0.01 | y = 0.8893x + 112.76 | |
H2PO4−-P | 0.61* | 0.52 | 0.22 | −0.10 | y = 0.7148x + 27.994 | |
Na+ | 0.28 | 0.12 | 0.00 | −0.41 | y = 0.2808x + 393.98 | |
K+ | 0.68* | 0.42 | 0.22 | 0.03 | y = 0.5778x + 1977.2 | |
Ca2+ | 0.55* | 0.36 | 0.12 | −0.01 | y = 0.7393x + 131.47 | |
Mg2+ | 0.67* | 0.37 | 0.10 | 0.01 | y = 0.9023x + 108.30 |
Regression Coefficients | Statistics and Tests | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Petiole Sap | ETc | Rad. | Temp. | RH | VPD | LAI | SS | Petiole Sap (t−1) | C | R2 (Adj R2) | F-Ratio | p-Value |
Cl− | 82.28 (17.27) | - | - | - | - | - | - | - | 964.96 (±30.86) | 76.42 (73.04) | 22.68 | <0.05 |
NO3−-N | - | - | - | - | 1306.82 (±32.20) | - | - | - | 881.14 (±19.41) | 98.86 (98.48) | 240.25 | <0.05 |
H2PO4−-P | - | - | - | - | - | −701.28 (±66.56) | - | - | 3259.22 (±301.66) | 95.69 (94.82) | 111.01 | <0.01 |
Na+ | - | - | - | - | 69.29 (±26.71) | −91.06 (±32.36) | - | - | 940.39 (±144.93) | 79.95 (71.93) | 9.97 | <0.05 |
K+ | 148.64 (±40.67) | - | - | - | - | −1358.91 (±157.74) | - | - | 10240.80 (±740.18) | 97.39 (96.09) | 74.71 | <0.01 |
Ca2+ | - | - | - | - | 469.83 (±54.18) | - | - | - | 435.65 (±15.24) | 94.94 (94.68) | 75.18 | <0.01 |
Mg2+ | - | - | - | - | 399.63 (120.49) | 1469.45 (186.95) | - | - | −5072.22 (826.88) | 97.09 (95.63) | 66.80 | <0.01 |
Yield | ||||
---|---|---|---|---|
Parameters | Petiole Sap | Soil Solution | Leaf | |
Cl− | 0.20 | −0.03 | Cl | 0.25 |
NO3−-N | −0.82* | −0.02 | N | −0.69* |
H2PO4−-P | −0.77* | 0.05 | P | −0.52* |
Na+ | 0.23 | −0.23 | Na | 0.34 |
K+ | −0.91* | 0.68* | K | −0.72* |
Ca2+ | 0.16 | −0.26 | ||
Mg2+ | 0.25 | −0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanderal, A.; García-Caparrós, P.; Pérez-Alonso, J.; Contreras, J.I.; Segura, M.L.; Reca, J.; Lao, M.T. Approach to Petiole Sap Nutritional Diagnosis Method by Empirical Model Based on Climatic and Growth Parameters. Agronomy 2020, 10, 188. https://doi.org/10.3390/agronomy10020188
Llanderal A, García-Caparrós P, Pérez-Alonso J, Contreras JI, Segura ML, Reca J, Lao MT. Approach to Petiole Sap Nutritional Diagnosis Method by Empirical Model Based on Climatic and Growth Parameters. Agronomy. 2020; 10(2):188. https://doi.org/10.3390/agronomy10020188
Chicago/Turabian StyleLlanderal, Alfonso, Pedro García-Caparrós, José Pérez-Alonso, Juana Isabel Contreras, María Luz Segura, Juan Reca, and María Teresa Lao. 2020. "Approach to Petiole Sap Nutritional Diagnosis Method by Empirical Model Based on Climatic and Growth Parameters" Agronomy 10, no. 2: 188. https://doi.org/10.3390/agronomy10020188
APA StyleLlanderal, A., García-Caparrós, P., Pérez-Alonso, J., Contreras, J. I., Segura, M. L., Reca, J., & Lao, M. T. (2020). Approach to Petiole Sap Nutritional Diagnosis Method by Empirical Model Based on Climatic and Growth Parameters. Agronomy, 10(2), 188. https://doi.org/10.3390/agronomy10020188