Seed Dormancy in Hairy Vetch (Vicia villosa Roth) Is Influenced by Genotype and Environment
Abstract
:1. Introduction
1.1. Genetic Variance in PY
1.2. Environmental Influences on PY
1.3. Hypotheses
2. Materials and Methods
2.1. Data Collection
2.1.1. Maternal Line Seed Production Environments
2.1.2. Physical Dormancy Assays
2.1.3. Weather Data Aggregation
2.2. Data Analysis
2.2.1. Estimation of Genetic and Environmental Effects on PY
2.2.2. Environmental Variables Influencing PY
3. Results
3.1. Genetic Variance and Heritability of PY
3.2. Environmental Effect
3.2.1. Environmental Variance in PY
3.2.2. Weather Variables Associated with PY
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Frye, W.W.; Blevins, R.L.; Smith, M.S.; Corak, S.J.; Varco, J.J. Role of Annual Legume Cover Crops in Efficient Use of Water and Nitrogen. Crop. Strat. Effic. Use Water Nitrogen 1988, 51, 129–154. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265. [Google Scholar] [CrossRef]
- Langdale, G.W.; Blevins, R.L.; Karlen, D.L.; McCool, D.K.; Nearing, M.A.; Skidmore, E.L.; Thomas, A.W.; Tyler, D.D.; Williams, J.R. Cover crop effects on soil erosion by wind and water. In Cover Crops for Clean Water; Hargrove, W.L., Ed.; Soil & Water Conservation Society: Ankeny, IA, USA, 1991; pp. 15–22. [Google Scholar]
- Kaspar, T.C.; Singer, J.W. The Use of Cover Crops to Manage Soil. Soil Manag. Build. A Stable Base Agric. 2015, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Torbert, H.A.; Reeves, D.W.; Mulvaney, R.L. Winter legume cover crop benefits to corn: Rotation vs. fixed-nitrogen effects. Agron. J. 1996, 88, 527–535. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Winter cover crops in Illinois: Evaluation of ecophysiological characteristics of corn. Crop Sci. 2006, 46, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- Baskin, C.C.; Baskin, J.M. Germination Ecology of Seeds with Physical Dormancy; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124166776. [Google Scholar]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Daughtry, C.S. Weed Suppression by Live and Desiccated Hairy Vetch (Vicia villosa). Weed Sci. 1993, 41, 207–212. [Google Scholar] [CrossRef]
- Mutchler, C.K.; McDowell, L.L. Soil loss from cotton with winter cover crops. Trans. Am. Soc. Agric. Eng. 1990, 33, 432–436. [Google Scholar] [CrossRef]
- Sainju, U.M.; Singh, B.P.; Yaffa, S. Soil organic matter and tomato yield following tillage, cover cropping, and nitrogen fertilization. Agron. J. 2002, 94, 594–602. [Google Scholar] [CrossRef]
- Yaffa, S.; Sainju, U.M.; Singh, B.P. Fresh market tomato yield and soil nitrogen as affected by tillage, cover cropping, and nitrogen fertilization. HortScience 2000, 35, 1258–1262. [Google Scholar] [CrossRef] [Green Version]
- Parr, M.; Grossman, J.M.; Reberg-Horton, S.C.; Brinton, C.; Crozier, C. Nitrogen Delivery from Legume Cover Crops in No-Till Organic Corn Production. Agron. J. 2011, 103, 1578–1590. [Google Scholar] [CrossRef]
- Power, J.F.; Zachariassen, J.A. Relative nitrogen utilization by legume cover crop species at three soil temperatures. Agron. J. 1993, 85, 134–140. [Google Scholar] [CrossRef]
- Decker, A.M.; Clark, A.J.; Meisinger, J.J.; Mulford, F.R.; McIntosh, M.S. Legume cover crop contributions to no-tillage corn production. Agron. J. 1994, 86, 126–135. [Google Scholar] [CrossRef]
- Brandsæter, L.O.; Olsmo, A.; Tronsmo, A.M.; Fykse, H. Freezing Resistance of Winter Annual and Biennial Legumes at Different Developmental Stages. Crop Sci. 2002, 42, 437–443. [Google Scholar] [CrossRef]
- Stute, J.K.; Posner, J.L. Legume cover crop options for grain rotations in Wisconsin. Agron. J. 1993, 85, 1128–1132. [Google Scholar] [CrossRef]
- Wayman, S.; Kissing Kucek, L.; Mirsky, S.B.; Ackroyd, V.; Cordeau, S.; Ryan, M.R. Organic and conventional farmers differ in their perspectives on cover crop use and breeding. Renew. Agric. Food Syst. 2016, 1–10. [Google Scholar] [CrossRef]
- CTICS. Annual Report 2016–2017 Cover Crop Survey, Joint publication of the Conservation Technology Information Center, the North Central Region Sustainable Agriculture Research and Education Program, and the American Seed Trade Association; CTICS: Wahington, DC, USA, 2017; pp. 1–46. [Google Scholar] [CrossRef]
- Jones, J.P. A physiological study of dormancy in vetch seed. Cornell Univ. Agric. Exp. Stn. 1928, 120, 1–50. [Google Scholar]
- Renzi, J.P.; Chantre, G.R.; Cantamutto, M.A. Development of a thermal-time model for combinational dormancy release of hairy vetch (Vicia villosa ssp. villosa). Crop Pasture Sci. 2014, 65, 470–478. [Google Scholar] [CrossRef]
- Renzi, J.P.; Chantre, G.R.; Cantamutto, M.A. Vicia villosa ssp. villosa Roth field emergence model in a semiarid agroecosystem. Grass Forage Sci. 2018, 73, 146–158. [Google Scholar] [CrossRef]
- Rolston, P.M. Water Impermeable Dormancy. Bot. Rev. 1978, 44, 365–396. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Biogeographical and Evolutionary Aspects of Seed Dormancy; Academic Press: London, UK, 2014; ISBN 9780124166776. [Google Scholar]
- Renzi, J.P.; Chantre, G.R.; Cantamutto, M.A. Effect of water availability and seed source on physical dormancy break of Vicia villosa ssp. villosa. Seed Sci. Res. 2016, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mirsky, S.B.; Wallace, J.M.; Curran, W.S.; Crockett, B.C. Hairy vetch seedbank persistence and implications for cover crop management. Agron. J. 2015, 107, 2391–2400. [Google Scholar] [CrossRef]
- Jacobsen, K.L.; Gallagher, R.S.; Burnham, M.; Bradley, B.B.; Larson, Z.M.; Walker, C.W.; Watson, J.E. Mitigation of seed germination impediments in hairy vetch. Agron. J. 2010, 102, 1346–1351. [Google Scholar] [CrossRef]
- Curran, W.S.; Wallace, J.M.; Mirsky, S.; Crockett, B. Effectiveness of Herbicides for Control of Hairy Vetch (Vicia villosa) in Winter Wheat. Weed Technol. 2015, 29, 509–518. [Google Scholar] [CrossRef]
- Keene, C.L.; Curran, W.S.; Wallace, J.M.; Ryan, M.R.; Mirsky, S.B.; Vangessel, M.J.; Barbercheck, M.E. Cover crop termination timing is critical in organic rotational no-till systems. Agron. J. 2017, 109, 272–282. [Google Scholar] [CrossRef]
- Elkins, D.M.; Hoveland, C.S.; Donnelly, E.D. Germination of Vicia Species and Interspecific Lines as Affected by Temperature Cycles. Crop Sci. 1966, 6, 45–48. [Google Scholar] [CrossRef]
- Jannink, J.; Merrick, L.C.; Liebman, M.; Dyck, E.A.; Corson, S. Management and winter hardiness of hairy vetch in Maine. Maine Agric. Exp. Stn. Tech. Bull. 1997, 167, 35. [Google Scholar]
- Modisa, O. Seed Dormancy in Vetch; University of Melbourne: Melbourne, Australia, 1999. [Google Scholar]
- Ladizinsky, G. The genetics of hard seed coat in the genus Lens. Euphytica 1985, 34, 539–543. [Google Scholar] [CrossRef]
- Forbes, I.; Wells, H. Hard and soft seededness in Blue Lupine, Lupinus angustifolius L.: Inheritance and pheno-type classification. Crop Sci. 1968, 8, 195–197. [Google Scholar] [CrossRef]
- Kongjaimun, A.; Kaga, A.; Tomooka, N.; Somta, P.; Vaughan, D.A.; Srinives, P. The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann. Bot. 2012, 109, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isemura, T.; Kaga, A.; Tomooka, N.; Shimizu, T.; Vaughan, D.A. The genetics of domestication of rice bean, Vigna umbellata. Ann. Bot. 2010, 106, 927–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isemura, T.; Kaga, A.; Tabata, S.; Somta, P.; Srinives, P.; Shimizu, T.; Jo, U.; Vaughan, D.A.; Tomooka, N. Construction of a genetic linkage map and genetic analysis of domestication related traits in Mungbean (Vigna radiata). PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weeden, N.F. Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the “domestication syndrome” for legumes? Ann. Bot. 2007, 100, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Miao, Z.; Cai, C.; Zhang, D.; Zhao, M.; Wu, Y.; Zhang, X.; Swarm, S.A.; Zhou, L.; Zhang, Z.J.; et al. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 2015, 47, 939–943. [Google Scholar] [CrossRef]
- Jang, S.; Sato, M.; Sato, K.; Jitsuyama, Y.; Fujino, K.; Mori, H.; Takahashi, R.; Benitez, E.R.; Liu, B.; Yamada, T. A Single-Nucleotide Polymorphism in an Endo-1, 4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean. PLoS ONE 2015, 1–19. [Google Scholar] [CrossRef]
- Donnelly, E.D.; Watson, J.E.; John, A. Inheritance of Hard Seed in Vicia. J. Hered. 1972, 7, 361–365. [Google Scholar] [CrossRef]
- Chinnasamy, G.; Bal, A.K. The pattern of seed development and maturation in beach pea (Lathyrus maritimus). Can. J. Bot. 2003, 81, 531–540. [Google Scholar] [CrossRef]
- Gresta, F.; Avola, G.; Onofri, A.; Anastasi, U.; Cristaudo, A. When does hard coat impose dormancy in legume seeds? Lotus and scorpiurus case study. Crop Sci. 2011, 51, 1739–1747. [Google Scholar] [CrossRef]
- Aitken, Y. The problem of hard seeds in subterranean clover. Proc. R. Soc. Vic. 1939, 51, 187–213. [Google Scholar]
- Hyde, E.O. The Function of the Hilum in Some Papilionaceae in Relation to the Ripening of the Seed and the Permeability of the Testa. Ann. Bot. 1954, 18, 241–256. [Google Scholar] [CrossRef]
- D’Hondt, B.; Brys, R.; Hoffmann, M. The incidence, field performance and heritability of non-dormant seeds in white clover (Trifolium repens L.). Seed Sci. Res. 2010, 20, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Tozer, M.G.; Ooi, M.K.J. Humidity-regulated dormancy onset in the Fabaceae: A conceptual model and its ecological implications for the Australian wattle Acacia saligna. Ann. Bot. 2014, 114, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.M.; Bunch, G.A. The effect of stocking rate on the population dynamics of siratro in siratro (Macroptilium atropurpureum)-setaria (Setaria sphacelata) pastures in south-east Queensland. II* Seed set, soil seed reserves, seedling recruitment and seedling survival. Aust. J. Agric. Res. 1987, 39, 221–234. [Google Scholar] [CrossRef]
- Argel, P.; Humphreys, L. Environmental effects on seed development and hardseededness in Stylosanthes hamata cv. Verano. I. Temperature. Aust. J. Agric. 1983, 34, 261–270. [Google Scholar] [CrossRef]
- Baciu-Miclau, D. Contribution to the study of hard seed and coat structure properties of soybean. Proc. Int. Seed Test. Assoc. 1970, 35, 599–617. [Google Scholar]
- Kissing Kucek, L.; Riday, H.; Ehlke, N.; Reberg-Horton, C.; Maul, J.; Mirsky, S.B.; Pelzer, C.J.; Poskaitis, M.; Ryan, M.R.; Seehaver, S.; et al. Environmental Influences on the Relationship between Fall and Spring Vigor in Hairy Vetch. Crop Sci. 2019, 59, 2443–2454. [Google Scholar] [CrossRef]
- Kalu, B.A.; Fick, G.W. Quantifying morphological development of alfalfa for studies of herbage quality. Crop Sci. 1981, 21, 267–271. [Google Scholar] [CrossRef]
- Renzi, J.P. Efecto de la Estructura del Cultivo y el Grado de Madurez a Cosecha Sobre el Rendimie to y la Calidad de Semillas de Vicia Sativa L., Bajo Riego. Ph.D. Thesis, La Universidad Nacional del Sur, Bahía Blanca, Argentina, 2009; p. 143. [Google Scholar]
- Kissing Kucek, L.; Riday, H.; Rufener, B.P.; Burke, A.N.; Eagen, S.S.; Ehlke, N.; Krogman, S.; Mirsky, S.B.; Reberg-Horton, C.; Ryan, M.R.; et al. Pod Dehiscence in Hairy Vetch (Vicia villosa Roth). Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Elias, S.G.; Copeland, L.O.; Mcdonald, M.B.; Baalbaki, R.Z. Germination and Viability Testing. In Seed Testing: Principles and Practices; Michigan State University Press: East Lansing, MI, USA, 2012; pp. 59–81. [Google Scholar]
- Samarah, N.H.; Allataifeh, N.; Turk, M.A.; Tawaha, A.M. Seed germination and dormancy of fresh and air-dried seeds of common vetch (Vicia sativa L.) harvested at different stages of maturity. Seed Sci. Technol. 2004, 32, 11–19. [Google Scholar] [CrossRef]
- Samarah, N.H. Effect of air-drying immature seeds in harvested pods on seed quality of common vetch (Vicia sativa L.). New Zeal. J. Agric. Res. 2006, 49, 331–339. [Google Scholar] [CrossRef]
- Brar, G.S.; Gomez, J.F.; McMichael, B.L.; Matches, A.G.; Taylor, H.M. Germination of Twenty Forage Legumes as Influenced by Temperature. Agron. J. 1991, 83, 173–175. [Google Scholar] [CrossRef]
- Renzi, J.; Cantamutto, M. Dormancia y germinacion en semillas de Vicia villosa Roth. Análisis Semillas 2009, 3, 84–89. [Google Scholar]
- Kissing, K.L.; Riday, H.; Wiering, N.P.; Azevedo, M.; Eagen, S.S.; Ehlke, N.; Hayes, R.J.; Krogman, S.; Mirsky, S.B.; Reberg-Horton, C.; et al. Vicia villosa seed physical dormancy dataset from 2017–2019. Ag Data Commons 2020. [Google Scholar] [CrossRef]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Sinauer Assoc Inc.: Sunderland, MA, USA, 1998. [Google Scholar]
- Vazquez, A.I.; Bates, D.M.; Rosa, G.J.M.; Gianola, D.; Weigel, K.A. Technical note: An R package for fitting generalized linear mixed models in animal breeding. J. Anim. Sci. 2010, 88, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.G.; Cullis, B.R.; Gilmour, A.R.; Gogel, B.J.; Thompson, R. ASReml-R Reference Manual Version 4. 2017. p. 176. Available online: https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/2018/02/ASReml-R-Reference-Manual-4.pdf (accessed on 1 September 2020).
- Meuwissen, T.H.E.; Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305–313. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing Organization; R Core Team R: Vienna, Autria, 2019. [Google Scholar]
- Teasdale, J.R.; Devine, T.E.; Mosjidis, J.A.; Bellinder, R.R.; Beste, C.E.; June, M. Growth and Development of Hairy Vetch Cultivars in the Northeastern United States as Influenced by Planting and Harvesting Date. Agron. J. 2004, 96, 1266–1271. [Google Scholar] [CrossRef]
- Baskerville, A.G.L.; Emin, P. Rapid Estimation of Heat Accumulation from Maximum and Minimum Temperatures. Ecology 1969, 50, 514–517. [Google Scholar] [CrossRef]
- van de Pol, M.; Cockburn, A. Identifying the critical climatic time window that affects trait expression. Am. Nat. 2011, 177, 698–707. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Norman, H.C.; Cocks, P.S.; Galwey, N.W. Hardseededness in annual clovers: Variation between populations from wet and dry environments. Aust. J. Agric. Res. 2002, 53, 821–829. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | Soil Type | Planting Date | Date(s) of Pod Harvests | Selection Intensity (%) |
---|---|---|---|---|---|---|
17MD | 39.03056 | −76.93306 | Russett–Christiana complex soil (fine-loamy, mixed, semiactive, mesic Aquic Hapludults) | 9/26/16 | NR | 4.5 |
17MN | 44.99028 | −93.17778 | Waukegan silt loam soil (fine-silty over sandy or sandy-skeletal, mixed, superactive, mesic Typic Hapludolls) | 9/19/16 | NR | 2.6 |
17NY | 42.46254 | −76.43894 | Genessee silt loam soil (fine-loamy, mixed, superactive, mesic Fluventic Eutrudepts) | 9/16/16 | 7/27/17 to 8/1/17 | 4.3 |
17WI | 43.34861 | −89.75500 | Richwood silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudolls), 1 to 6 percent slopes | 8/23/16 | 7/20/17 to 8/1/17 | 6.7 |
18CL | 35.66308 | −78.50514 | Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults) | 10/6/17 | 6/1/18 to 6/25/18 | 7.4 |
18GB | 35.38448 | −78.03116 | Wickham sandy loam, 2 to 6 percent slopes, eroded (WkB2) | 10/18/17 | 6/25/18 | 6.4 |
18MD | 39.03056 | −76.93306 | Russett–Christiana complex soil (fine-loamy, mixed, semiactive, mesic Aquic Hapludults) | 9/25/17 | 7/18/18 | 4.1 |
18MN | 44.68369 | −93.07197 | Timula-Bold silt loam (Coarse-silty, mixed, superactive, mesic Typic Eutrudepts) | 9/8/17 | 7/16/18–8/3/18 | 3.3 |
18NYE | 42.45004 | −76.45867 | Williamson very fine sandy loam, 2 to 6 percent slopes | 9/13/17 | 7/11/18, 7/16/18, 7/26/18 | 4.6 |
18NYR | 42.45824 | −76.43526 | Hudson and Collamer silt loams, 2 to 6 percent slopes | 9/15/17 | 7/24/18, 7/26/18 | 3.5 |
18WI | 43.34958 | −89.75516 | Richwood silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudolls), 1 to 6 percent slopes | 9/6/17 | 7/18/18 | 4.9 |
19MD | 39.03056 | −76.93306 | Russett–Christiana complex soil (fine-loamy, mixed, semiactive, mesic Aquic Hapludults) | 10/9/18 | 6/20/19–7/9/19 | 2.1 |
19MN | 44.99600 | −93.17364 | Waukegan silt loam soil (fine-silty over sandy or sandy-skeletal, mixed, superactive, mesic Typic Hapludolls) | 9/14/18 | 7/24/19 | 1.4 |
19NCE | 35.68161 | −80.60634 | ChA. Chewacla loam, 0 to 2 percent slopes, frequently flooded | 9/28/18 | 6/3/19, 6/18/19 | 1.9 |
19NCL | 35.66555 | −78.49320 | Clayton. Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults) | 10/5/18 | 6/5/19, 6/11/19, 6/18/19 | 1.9 |
19NY | 42.45234 | −76.38419 | Erie channery silt loam, 3 to 8 percent slopes | 9/21/18 | 7/30/19, 8/2/19, 8/7/19, 8/16/19 | 1.4 |
19OK | 33.88875 | −97.27211 | Slaughterville fine sandy loam, 0 to 1 percent slopes | 10/29/18 | 6/17/19–6/27/19 | 1.1 |
19WI | 43.34889 | −89.75582 | Richwood silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudolls), 1 to 6 percent slopes | 9/13/18 | NR | 1.2 |
Effect | Variance | Standard Error | Z Ratio |
---|---|---|---|
Additive Genetic | 1.8597 | 0.0789 | 23.5710 |
Environmental | 1.2895 | 0.4736 | 2.7227 |
Technical Replicate | 0.4644 | 0.2397 | 1.9376 |
Residual | 1 | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kissing Kucek, L.; Azevedo, M.D.; Eagen, S.S.; Ehlke, N.J.; Hayes, R.J.; Mirsky, S.B.; Reberg-Horton, C.; Ryan, M.R.; Wayman, S.; Wiering, N.P.; et al. Seed Dormancy in Hairy Vetch (Vicia villosa Roth) Is Influenced by Genotype and Environment. Agronomy 2020, 10, 1804. https://doi.org/10.3390/agronomy10111804
Kissing Kucek L, Azevedo MD, Eagen SS, Ehlke NJ, Hayes RJ, Mirsky SB, Reberg-Horton C, Ryan MR, Wayman S, Wiering NP, et al. Seed Dormancy in Hairy Vetch (Vicia villosa Roth) Is Influenced by Genotype and Environment. Agronomy. 2020; 10(11):1804. https://doi.org/10.3390/agronomy10111804
Chicago/Turabian StyleKissing Kucek, L., M.D. Azevedo, S.S. Eagen, N.J. Ehlke, R.J. Hayes, S.B. Mirsky, C. Reberg-Horton, M.R. Ryan, S. Wayman, N.P. Wiering, and et al. 2020. "Seed Dormancy in Hairy Vetch (Vicia villosa Roth) Is Influenced by Genotype and Environment" Agronomy 10, no. 11: 1804. https://doi.org/10.3390/agronomy10111804