Biomass, Seed and Energy Yield of Cynara cardunculus L. as Affected by Environment and Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Climate and Soil
2.2. Experimental Design, Plant Material and Management Practices
2.3. Data Collection
2.4. Meteorological and Soil Measurements
2.5. Statistical Analysis
2.6. Temperature and Rainfall
3. Results
3.1. Plant Survival and Height
3.2. Aboveground Dry Biomass Yield and Its Partitioning
3.3. Seed Yield and Components
3.4. Energy Yield
3.5. Oil Yield and Fatty Acids Composition
3.6. Correlation Among Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rottenberg, A.; Zohary, D.; Nevo, E. Isozyme relationship between cultivated artichoke and the wild relatives. Genet. Resour. Crop Evol. 1996, 43, 59–62. [Google Scholar] [CrossRef]
- Mauromicale, G.; Pesce, G.R.; Curt, M.D.; Fernandez, J.; Gonzalez, J.; Gominho, J.; Tabla, R.; Roa, I.; Portis, E. Cynara cardunculus as a Multiuse Crop. In The Globe Artichoke Genome; Portis, E., Acquadro, A., Lanteri, S., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 65–98. [Google Scholar]
- Lanteri, S.; Acquadro, A.; Comino, C.; Mauro, R.; Mauromicale, G.; Portis, E. First genetic linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellites markers. Theor. Appl. Genet. 2006, 112, 1532–1542. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Ierna, A. Response of seed-grown globe artichoke to different levels of nitrogen fertilization and water supplies. Acta Hortic. 2005, 681, 237–242. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G.; Licandro, P.G. Yield and harvest time of globe artichoke in relation to nitrogen and phosphorus fertilization. Acta Hortic. 2006, 700, 115–119. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Chisari, M.; Spagna, G.; Ierna, A.; Patanè, A.; Occhipinti, A. Caseinolytic activity expression in flowers of Cynara cardunculus L. Acta Hortic. 2007, 730, 195–199. [Google Scholar] [CrossRef]
- Lanteri, S.; Portis, E.; Acquadro, A.; Mauro, R.P.; Mauromicale, G. Morphology and SSR fingerprinting of newly developed Cynara cardunculus genotypes exploitable as ornamentals. Euphytica 2012, 184, 311–321. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, C.; Parafati, L.; Cirvilleri, G.; Mauromicale, G. Antimicrobial activity of cultivated cardoon (Cynara cardunculus L. var. altilis DC.) leaf extracts against bacterial species of agricultural and food interest. Ind. Crop. Prod. 2019, 129, 206–211. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Mauromicale, G. Leaf extracts of cultivated cardoon as potential bioherbicide. Sci. Hortic. 2020, 261, 109024. [Google Scholar] [CrossRef]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crop. Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Curt, M.D.; Sánchez, G.; Fernández, J. The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy 2002, 23, 33–46. [Google Scholar] [CrossRef]
- Angelini, L.G.; Ceccarini, L.; Di Nasso, N.N.O.; Bonari, E. Long term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 2009, 33, 810–816. [Google Scholar] [CrossRef]
- Gominho, J.; Lourenço, A.; Palma, P.; Lourenço, M.; Curt, M.D.; Fernández, J.; Pereira, H. Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Ind. Crop. Prod. 2011, 33, 1–6. [Google Scholar] [CrossRef]
- Ierna, A.; Mauro, R.P.; Mauromicale, G. Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenergy 2012, 36, 404–410. [Google Scholar] [CrossRef]
- Acquadro, A.; Barchi, L.; Portis, E.; Mangino, G.; Valentino, D.; Mauromicale, G.; Lanteri, S. Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci. Rep. 2017, 7, 5617. [Google Scholar] [CrossRef] [PubMed]
- Portis, E.; Acquadro, A.; Longo, A.M.G.; Mauro, R.; Mauromicale, G.; Lanteri, S. Potentiality of Cynara cardunculus L. as energy crop. J. Biotechnol. 2010, 150, S165–S166. [Google Scholar] [CrossRef]
- Pesce, G.R.; Fernandes, M.C.; Mauromicale, G. Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass Bioenergy 2020, 134, 105471. [Google Scholar] [CrossRef]
- Pesce, G.R.; Negri, M.; Bacenetti, J.; Mauromicale, G. The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind. Crop. Prod. 2017, 103, 233–239. [Google Scholar] [CrossRef]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Dauber, J.; Miyake, S. To integrate or to segregate food crop and energy crop cultivation at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain. Soc. 2016, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Gerwin, W.; Repmann, F.; Spyridon, G.; Despoina, V.; Gounairs, N.; Baumgarten, W.; Christiane, V.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and quantification of marginal lands for biomass production in Europe using soil quality indicators. Soil 2018, 4, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Ciria, C.S.; Sanz, M.; Carrasco, J.; Ciria, P. Identification of arable marginal lands under rainfed conditions for bioenergy purposes in Spain. Sustainability 2019, 11, 1833. [Google Scholar] [CrossRef] [Green Version]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Raccuia, S.A.; Fallico, B.; Fanella, F.; Maccarone, E. Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind. Crop. Prod. 1999, 10, 219–228. [Google Scholar] [CrossRef]
- Piscioneri, I.; Sharma, N.; Baviello, G.; Orlandini, S. Promising industrial energy crop, Cynara cardunculus: A potential source for biomass production and alternative energy. Energy Convers. Manag. 2000, 41, 1091–1105. [Google Scholar] [CrossRef]
- González, J.F.; González-García, C.M.; Ramiro, A.; González, J.; Sabio, E.; Gañán, J.; Rodríguez, M.A. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 2004, 27, 145–154. [Google Scholar] [CrossRef]
- Gherbin, P.; Monteleone, M.; Tarantino, E. Five year evaluation on cardoon (Cynara cardunculus L. var altilis) biomass production in a Mediterranean environment. Ital. J. Agron. 2001, 5, 11–19. [Google Scholar]
- Mantineo, M.; D’Agosta, G.M.; Copani, V.; Patanè, C.; Cosentino, S.L. Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop. Res. 2009, 114, 204–213. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass Bioenergy 2010, 34, 754–760. [Google Scholar] [CrossRef]
- Ledda, L.; Deligios, P.A.; Farci, R.; Sulas, L. Biomass supply for energetic purposes from some Carduae species grown in Mediterranean farming systems. Ind. Crop. Prod. 2013, 47, 218–226. [Google Scholar] [CrossRef]
- Mauromicale, G.; Sortino, O.; Pesce, G.R.; Agnello, M.; Mauro, R.P. Suitability of cultivated and wild cardoon as a sustainable bioenergycrop for low input cultivation in low quality Mediterranean soils. Ind. Crop. Prod. 2014, 57, 82–89. [Google Scholar] [CrossRef]
- Vasilakoglou, I.; Dhima, K. Potential of two cardoon varieties to produce biomass and oil under reduced irrigation and weed control inputs. Biomass Bioenergy 2014, 63, 177–186. [Google Scholar] [CrossRef]
- Osservatorio Delle Acque. Available online: www.osservatorioacque.it (accessed on 26 July 2020).
- Fierotti, G. I Suoli Della Sicilia; Dario Flaccovio Editore: Palermo, Italy, 1997. [Google Scholar]
- USDA United States Department of Agriculture; Soil Conservation Service. Soil Taxonomy a Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Handbook; 436.U.S. Government Printing Office: Washington, DC, USA, 1999; pp. 1–886.
- Scavo, A.; Restuccia, A.; Abbate, C.; Mauromicale, G. Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agron. Sustain. Dev. 2019, 39, 41. [Google Scholar] [CrossRef]
- International Organization for Standardization. Available online: www.iso.org/standard/43169.html (accessed on 20 September 2016).
- Violante, P. Metodi di Analisi Chimica del Suolo; Franco Angeli: Milano, Italy, 2000. [Google Scholar]
- Fernández, J.; Hidalgo, M.; Del Monte, J.P.; Curt, M. Cynara cardunculus L. as a perennial crop for non-irrigated lands: Yields and applications. Acta Hortic. 2005, 109–116. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Impagliazzo, A.; Cozzolino, E.; Masucci, F.; Mori, M.; Fagnano, M. Yields and quality of biomasses and grain in Cynara cardunculus L. grown in southern Italy, as affected by genotype and environmental conditions. Ital. J. Agron. 2017, 12, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Fazio, S.; Monti, A. Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass Bioenergy 2011, 35, 4868–4878. [Google Scholar] [CrossRef]
- Cravero, V.; Martin, E.; Crippa, I.; Anido, F.L.; García, S.M.; Cointry, E. Fresh biomass production and partitioning of aboveground growth in the three botanical varieties of Cynara cardunculus L. Ind. Crop. Prod. 2012, 37, 253–258. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Struik, P.C.; Yin, X.; Bastiaans, L.; Vos, J.; Danalatos, N.G. Inflorescence characteristics, seed composition, and allometric relationships predicting seed yields in the biomass crop Cynara cardunculus. GCB Bioenergy 2010, 113–129. [Google Scholar] [CrossRef]
- Portis, E.; Scaglione, D.; Acquadro, A.; Mauromicale, G.; Mauro, R.; Knapp, S.J.; Lanteri, S. Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Genomics. 2012, 5, 252. [Google Scholar] [CrossRef] [Green Version]
- Scaglione, D.; Reyes-Chin-Wo, S.; Acquadro, A.; Froenicke, L.; Portis, E.; Beitel, C.; Tirone, M.; Mauro, R.; Lo Monaco, A.; Mauromicale, G.; et al. The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F 1 progeny. Sci. Rep. 2016, 6, 19427. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Dias, S.; Gominho, J.; Baptista, I.; Pereira, H. Pattern recognition of cardoon oil from different large-scale field trials. Ind. Crop. Prod. 2018, 118, 236–245. [Google Scholar] [CrossRef]
- Maccarone, E.; Fallico, B.; Fanella, F.; Mauromicale, G.; Raccuia, S.A.; Foti, S. Possible alternative utilization of Cynara spp. II. Chemical characterization of their grain oil. Ind. Crop. Prod. 1999, 10, 229–237. [Google Scholar] [CrossRef]
- Alexandre, A.M.R.C.; Dias, A.M.A.; Seabra, I.J.; Portugal, A.A.T.G.; de Sousa, H.C.; Braga, M.E.M. Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L. J. Supercrit Fluids 2012, 68, 52–63. [Google Scholar] [CrossRef]
- Sengo, I.; Gominho, J.; D’Orey, L.; Martins, M.; D’Almeida Duarte, E.; Pereira, H.; Ferreira-Dias, S. Response surface modeling and optimization of biodiesel pro-duction from Cynara cardunculus oil. Eur. J. Lipid Sci. Technol. 2010, 112, 310–320. [Google Scholar]
Location | ||
---|---|---|
Ispica (Plain) | Modica (Hills) | |
Geographical coordinates | ||
Latitude and longitude | 36°47′ N 14°54′ E | 36°53′ N 14°51′ E |
Altitude (m a.s.l.) | 42 | 419 |
Soil characteristics | ||
Clay (>0.002 mm) (%) | 19 | 38 |
Silt (0.02–0.002 mm) (%) | 10 | 26 |
Sand (2–0.02 mm) (%) | 71 | 36 |
Total N (g kg−1) | 0.8 | 1.4 |
Organic matter (g kg−1) | 12.2 | 14.0 |
P2O5 available (mg kg−1) | 57 | 53 |
K2O exchangeable (mg kg−1) | 302 | 351 |
pH | 7.7 | 7.4 |
Climate characteristics | ||
Annual total rainfall (mm) | 481 | 613 |
Annual rainy days (N) | 53 | 63 |
Average maximum temperatures (°C) | 23.4 | 24.2 |
Average minimum temperatures (°C) | 14.8 | 13.9 |
Variable | Location (L) | Genotype (G) | Season (S) | (L) × (G) | (L) × (S) | (G) × (S) | (L) × (G) × (S) |
---|---|---|---|---|---|---|---|
Degree of freedom | 1 | 1 | 2 | 1 | 2 | 2 | 2 |
Plants survival (%) | NS | 9 ** | 19 *** | NS | NS | NS | NS |
Plant height (cm) | 21 *** | 997 *** | 112 *** | NS | NS | 25 *** | NS |
Biomass yield (t DM ha−1) | 14 ** | 697 *** | 69 *** | NS | NS | 37 *** | NS |
Biomass DM content (%) | 15 ** | NS | 7 * | 8 ** | NS | NS | |
Leaves incidence (%) | NS | 70 *** | NS | NS | NS | 5 | NS |
Stalks incidence (%) | NS | 347 *** | 5 * | NS | NS | 5 | NS |
Heads incidence (%) | NS | 513 *** | 4 * | NS | NS | 4 | NS |
Seed yield (t DM ha−1) | 5 * | 1343 *** | NS | NS | NS | 20 *** | NS |
N heads plant−1 | NS | NS | 10 *** | NS | NS | 10 *** | NS |
Seed weight head−1 | NS | 103 *** | 3 *** | NS | NS | 4 *** | NS |
Biomass E yield (GJ ha−1) | 14 ** | 698 *** | 69 *** | NS | NS | 37 *** | NS |
Seed E yield (GJ ha−1) | 5 * | 1343 *** | NS | NS | NS | 20 *** | NS |
Total E yield (GJ ha−1) | 14 ** | 787 *** | 68 *** | NS | NS | 36 *** | NS |
Plant Survival (%) | Plant Height (cm) | Biomass Yield (t DM ha−1) | Biomass DM Content (%) | Leaves (1) Incid. (%) | Stalks (1) Incid. (%) | Heads (1) Incid. (%) | |
---|---|---|---|---|---|---|---|
Location | |||||||
Plain | 98.8 a | 127.3 b | 9.7 b | 91.6 a | 35.5 a | 35.9 a | 28.6 a |
Hills | 98.8 a | 134.0 a | 10.9 a | 86.6 b | 36.0 a | 36.5 a | 27.5 a |
Genotype | |||||||
Cultiv. cardoon | 98.2 b | 153.8 a | 14.2 a | 89.0 a | 38.5 a | 42.6 a | 18.7 b |
Wild cardoon | 99.3 a | 107.5 b | 6.4 b | 89.3 a | 32.9 b | 29.8 b | 37.4 a |
Season | |||||||
S1 | 100 a | 118.7 c | 7.9 b | 89.6 ab | 35.4 ab | 34.9 b | 29.7 a |
S2 | 98.9 b | 128.1 b | 11.6 a | 91.9 a | 36.8 a | 36.1 ab | 27.2 b |
S3 | 97.4 c | 145.2 a | 11.6 a | 85.8 b | 35.0 b | 37.7 a | 27.3 b |
Biomass Yield Yield | Seed Yield | Heads | Seed Weight | ||
---|---|---|---|---|---|
Genotype | Season | (t DM ha−1) | (t DM ha−1) | (N plant−1) | (g head−1) |
Cultiv. cardoon | S1 | 10.0 | 0.65 | 6.7 | 3.97 |
S2 | 16.5 | 0.71 | 5.7 | 5.26 | |
S3 | 16.2 | 0.59 | 4.7 | 5.33 | |
Wild cardoon | S1 | 5.7 | 0.22 | 5.5 | 1.66 |
S2 | 6.6 | 0.22 | 5.2 | 1.69 | |
S3 | 6.9 | 0.27 | 5.5 | 2.05 | |
LSD interaction p ≤ 0.05 | 1.7 | 0.06 | 1.1 | 0.62 |
Seed Yield (t DM ha−1) | Heads (N plant−1) | Seed Weight (g head−1) | Biomass E (1) Yield (GJ ha−1) | Seed E (1) Yield (GJ ha−1) | Total E (1) Yield (GJ ha−1) | |
---|---|---|---|---|---|---|
Location | ||||||
Plain | 0.44 b | 5.4 a | 3.2 a | 162 b | 10 a | 172 b |
Hills | 0.46 a | 5.6 a | 3.4 a | 180 a | 10 a | 190 a |
Genotype | ||||||
Cultiv. cardoon | 0.65 a | 5.7 a | 4.8 a | 236 a | 15 a | 251 a |
Wild cardoon | 0.24 b | 5.4 a | 1.8 b | 106 b | 5 b | 111 b |
Season | ||||||
S1 | 0.44 ab | 6.1 a | 2.8 b | 130 b | 10 a | 140 b |
S2 | 0.46 a | 5.4 b | 3.5 a | 191 a | 10 a | 201 a |
S3 | 0.44 b | 5.1 b | 3.7 a | 191 a | 10 a | 201 a |
Biomass E (1) Yield | Seed E (1) Yield | Total E (1) Yield | ||
---|---|---|---|---|
Genotype | Season | (GJ ha−1) | (GJ ha−1) | (GJ ha−1) |
Cultivated cardoon | S1 | 165 | 15 | 180 |
S2 | 273 | 16 | 289 | |
S3 | 269 | 13 | 282 | |
Wild cardoon | S1 | 95 | 5 | 100 |
S2 | 109 | 5 | 114 | |
S3 | 114 | 6 | 120 | |
LSD interaction p ≤ 0.05 | 30 | 2 | 30 |
Location | Genotype | ||||
---|---|---|---|---|---|
Variable | Unit | Plain | Hills | Cultiv. Cardoon | Wild Cardoon |
Seeds moisture | % | 5.9 ± 0.3 | 8.1 ± 1.0 | 7.2 ± 0.2 | 6.8 ± 0.1 |
Oil yield | g 100 g−1 DW | 23.9 ± 2.0 | 24.1 ± 1.6 | 25.0 ± 1.3 | 23.0 ± 1.5 |
Acidity | % oleic acid | 1.0 ± 0.2 | 0.7 ± 0.1 | 1.3 ± 0.1 | 0.4 ± 0.03 |
Myristic, C14:0 | g 100 g−1 DW | 0.13 ± 0.02 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.02 |
Palmitic, C16:0 | “ | 11.1 ± 1.4 | 10.8 ± 1.1 | 11.0 ± 1.3 | 10.9 ± 1.2 |
Palmitoleic, C16:1 | “ | 0.15 ± 0.01 | 0.18 ± 0.02 | 0.21 ± 0.01 | 0.12 ± 0.01 |
Heptadecanoic, C17:0 | “ | 0.04 ± 0.003 | 0.05 ± 0.004 | 0.06 ± 0.005 | 0.03 ± 0.004 |
Stearic, C18:0 | “ | 3.45 ± 0.2 | 3.25 ± 0.3 | 3.30 ± 0.3 | 3.40 ± 0.2 |
Oleic, C18:1 | “ | 28.5 ± 1.6 | 27.6 ± 1.9 | 28.4 ± 2.3 | 27.7 ± 1.8 |
Linoleic, C18:2 | “ | 55.3 ± 2.7 | 54.3 ± 2.8 | 54.8 ± 2.7 | 54.8 ± 2.5 |
Linolenic, C18:3 | “ | 0.04 ± 0.003 | 0.06 ± 0.004 | 0.06 ± 0.005 | 0.04 ± 0.003 |
Arachidic, C20:0 | “ | 0.40 ± 0.05 | 0.37 ± 0.03 | 0.39 ± 0.04 | 0.38 ± 0.05 |
Behenic, C22:0 | “ | 0.14 ± 0.02 | 0.13 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 |
Lignoceric, C24:0 | “ | 0.21 ± 0.01 | 0.20 ± 0.01 | 0.21 ± 0.02 | 0.20 ± 0.01 |
Plant Height | Biomass Yield | Biomass DM | Leaves Incid. | Stalks Incid. | Heads Incid. | N Heads plant−1 | Seed Weight head−1 | Seed Yield | Biomass E Yield | Seed E Yield | Total E Yield | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant height | - | |||||||||||
Biomass yield | 0.89 *** | - | ||||||||||
Biomass DM | NS | NS | - | |||||||||
Leaves incid. | 0.75 *** | 0.77 *** | NS | - | ||||||||
Stalks incid. | 0.89 *** | 0.91 *** | NS | 0.70 *** | - | |||||||
Heads incid. | −0.91 *** | −0.93 *** | NS | −0.86 *** | −0.97 *** | - | ||||||
N heads plant−1 | NS | NS | NS | NS | NS | NS | - | |||||
Seed weight head−1 | 0.91 *** | 0.94 *** | NS | 0.76 *** | 0.93 *** | −0.94 *** | NS | - | ||||
Seed yield | 0.88 *** | 0.86 *** | NS | 0.84 *** | 0.90 *** | −0.95 *** | NS | 0.92 *** | - | |||
Biomass E yield | 0.90 *** | 0.99 *** | NS | 0.77 *** | 0.91 *** | −0.93 *** | NS | 0.94 *** | 0.86 *** | - | ||
Seed E yield | 0.88 *** | 0.86 *** | NS | 0.84 *** | 0.90 *** | −0.95 *** | NS | 0.92 *** | 0.99 *** | 0.86 *** | - | |
Total E yield | 0.90 *** | 0.99 *** | NS | 0.78 *** | 0.91 *** | −0.93 *** | NS | 0.95 *** | 0.87 *** | 0.99 *** | 0.87 *** | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ierna, A.; Sortino, O.; Mauromicale, G. Biomass, Seed and Energy Yield of Cynara cardunculus L. as Affected by Environment and Season. Agronomy 2020, 10, 1548. https://doi.org/10.3390/agronomy10101548
Ierna A, Sortino O, Mauromicale G. Biomass, Seed and Energy Yield of Cynara cardunculus L. as Affected by Environment and Season. Agronomy. 2020; 10(10):1548. https://doi.org/10.3390/agronomy10101548
Chicago/Turabian StyleIerna, Anita, Orazio Sortino, and Giovanni Mauromicale. 2020. "Biomass, Seed and Energy Yield of Cynara cardunculus L. as Affected by Environment and Season" Agronomy 10, no. 10: 1548. https://doi.org/10.3390/agronomy10101548
APA StyleIerna, A., Sortino, O., & Mauromicale, G. (2020). Biomass, Seed and Energy Yield of Cynara cardunculus L. as Affected by Environment and Season. Agronomy, 10(10), 1548. https://doi.org/10.3390/agronomy10101548