Effect of Tree Presence and Soil Characteristics on Soybean Yield and Quality in an Innovative Alley-Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Crop Management
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Spatial Variability of Soil Characteristics
3.3. Effect of the Position in the Alley on Light Availability, Soybean Yield and Quality
3.4. PCA Analysis of the Effect of Soil Characteristics on Soybean Yield and Quality
4. Discussion
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sand | Silt | Clay | pH | SOM | Total N | P2O5 | K2O | |
---|---|---|---|---|---|---|---|---|
Ordinary kriging parameters (0–10 cm soil depth) and cross-validation (5 folds) results | ||||||||
Variogram Model | Sph | Exp | Exp | Wav | Exp | Sph | Gau | Gau |
Nugget | 512.86 | 177.38 | 0.00 | 0.01 | 0.05 | 0.01 | 313.68 | 958.79 |
Partial Sill | 12,685.88 | 29,885.08 | 1542.97 | 0.01 | 0.31 | 0.071 | 4230.47 | 6662.27 |
Range | 89.88 | 363.82 | 13.74 | 39.99 | 27.77 | 50.80 | 67.35 | 9.19 |
MSNE * | 0.77 | 0.815 | 0.98 | 1.29 | 0.90 | 1.16 | 0.49 | 0.87 |
Correlation ** | 0.98 | 0.98 | 0.95 | 0.78 | 0.67 | 0.61 | 0.96 | 0.79 |
Ordinary kriging parameters (10–30 cm soil depth) and cross-validation (5 folds) results | ||||||||
Variogram Model | Gau | Gau | Exp | Sph | Exp | Sph | Gau | Sph |
Nugget | 1024.52 | 508.80 | 127.43 | 0.000 | 0.030 | 0.006 | 152.67 | 0.00 |
Partial sill | 8990.09 | 4924.37 | 1227.82 | 0.02 | 0.26 | 0.07 | 2065.38 | 8458.37 |
Range | 34.360 | 40.25 | 23.82 | 15.26 | 37.10 | 47.96 | 23.07 | 44.86 |
MSNE * | 1.83 | 1.30 | 0.95 | 0.76 | 0.99 | 1.01 | 1.31 | 1.08 |
Correlation ** | 0.96 | 0.97 | 0.96 | 0.86 | 0.65 | 0.71 | 0.94 | 0.85 |
References
- Mosquera-Losada, M.R.; McAdam, J.H.; Romero-Franco, R.; Santiago-Freijanes, J.J.; Rigueiro-Rodróguez, A. Definitions and Components of Agroforestry Practices in Europe. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 3–19. ISBN 978-1-4020-8272-6. [Google Scholar]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Nasielski, J.; Furze, J.R.; Tan, J.; Bargaz, A.; Thevathasan, N.V.; Isaac, M.E. Agroforestry promotes soybean yield stability and N2-fixation under water stress. Agron. Sustain. Dev. 2015, 35, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Camilli, F.; Pisanelli, A.; Seddaiu, G.; Franca, A.; Bondesan, V.; Rosati, A.; Moreno, G.M.; Pantera, A.; Hermansen, J.E.; Burgess, P.J. How local stakeholders perceive agroforestry systems: An Italian perspective. Agrofor. Syst. 2018, 92, 849–862. [Google Scholar] [CrossRef]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Dalla Valle, C.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What is the future for agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef] [Green Version]
- Tsonkova, P.; Böhm, C.; Quinkenstein, A.; Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: A review. Agrofor. Syst. 2012, 85, 133–152. [Google Scholar] [CrossRef]
- Beuschel, R.; Piepho, H.P.; Joergensen, R.G.; Wachendorf, C. Effects of converting a temperate short-rotation coppice to a silvo-arable alley cropping agroforestry system on soil quality indicators. Agrofor. Syst. 2019, 2, 1–2. [Google Scholar] [CrossRef]
- Schreuder, R.; De Visser, C. EIP-AGRI Focus Group Protein Crops : Final report. European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Weightman, R.M.; Cottrill, B.R.; Wiltshire, J.J.J.; Kindred, D.R.; Sylvester-Bradley, R. Opportunities for avoidance of land-use change through substitution of soya bean meal and cereals in European livestock diets with bioethanol coproducts. GCB Bioenergy 2011, 3, 158–170. [Google Scholar] [CrossRef]
- Sugiyama, A.; Ueda, Y.; Takase, H.; Yazaki, K. Do soybeans select specific species of Bradyrhizobium during growth? Commun. Integr. Biol. 2015, 8, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, P.E.; Simpson, J.A.; Thevathasan, N.V.; Gordon, A.M. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol. Eng. 2007, 29, 362–371. [Google Scholar] [CrossRef]
- Isaac, M.E.; Carlsson, G.; Ghoulam, C.; Makhani, M.; Thevathasan, N.V.; Gordon, A.M. Legume Performance and Nitrogen Acquisition Strategies in a Tree-Based Agroecosystem. Agroecol. Sustain. Food Syst. 2014, 38, 686–703. [Google Scholar] [CrossRef]
- Caron, B.O.; Sgarbossa, J.; Schwerz, F.; Elli, E.F.; Eloy, E.; Behling, A. Dynamics of solar radiation and soybean yield in agroforestry systems. An. Acad. Bras. Cienc. 2018, 90, 3799–3812. [Google Scholar] [CrossRef] [PubMed]
- Ogwok, G.; Id, P.O.A.; Kizza, S. Influence of Shea tree (Vitellaria paradoxa) on maize and soybean production. PLoS ONE 2019, 14, e0201329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; Food and Agriculture Organization of the United Nations—FAO: Rome, Italy, 2008; ISBN 9789251059814. [Google Scholar]
- Frazer, G.; Canham, C.; Lertzman, K. Gap Light Analyzer (GLA), Version 2.0: Imaging Software to Extract Canopy Structure and Gap Light Transmission Indices from True-Color Fisheye Photographs, Users Manual and Program Documentation; Simon Fraser University: Burnaby, BC, Canada; Institute of Ecosystem Studies: Millbrook, NY, USA, 1999. [Google Scholar]
- A.O.A.C. Official Methods of Analysis of the Association of Official Analytical Chemists; A.O.A.C.: Rockville, MD, USA, 1990; Volume 60, p. 334. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 20 September 2019).
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-temporal interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Hiemstra, P. Package “automap”. Available online: https://cran.r-project.org/web/packages/automap/automap.pdf (accessed on 20 September 2019).
- Quantum GIS geographic information system. Open Source Geospatial Foundation Project. 2013. Available online: http://www.qgis.org/it/site/ (accessed on 20 September 2019).
- Ogle, D.H.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.25; Available online: https://github.com/droglenc/FSA (accessed on 20 September 2019).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.2. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 20 September 2019).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R package version 2.5-2. Cran R 2019, 1, 2. [Google Scholar]
- Yang, S.S.; Bellogı, R.A.; Buendı, A.; Miao, L.; Ollero, F.J.; Olsthoorn, M.M.A.; Rodrı, D.N. Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J. Biotechnol. 2001, 91, 243–255. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Raizada, M.N. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol. Biochem. 2017, 105, 177–196. [Google Scholar] [CrossRef]
- Wu, Y.S.; Yang, F.; Gong, W.Z.; Ahmed, S.; Fan, Y.F.; Wu, X.L.; Yong, T.W.; Liu, W.G.; Shu, K.; Liu, J.; et al. Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. J. Integr. Agric. 2017, 16, 1331–1340. [Google Scholar] [CrossRef]
- Kakiuchi, J.; Kobata, T. The relationship between dry matter increase of seed and shoot during the seed-filling period in three kinds of soybeans with different growth habits subjected to shading and thinning. Plant Prod. Sci. 2006, 9, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Rivest, D.; Cogliastro, A.; Vanasse, A.; Olivier, A. Production of soybean associated with different hybrid poplar clones in a tree-based intercropping system in southwestern Québec, Canada. Agric. Ecosyst. Environ. 2009, 131, 51–60. [Google Scholar] [CrossRef]
- Carrier, M.; Rhéaume Gonzalez, F.A.; Cogliastro, A.; Olivier, A.; Vanasse, A.; Rivest, D. Light availability, weed cover and crop yields in second generation of temperate tree-based intercropping systems. F. Crop. Res. 2019, 239, 30–37. [Google Scholar] [CrossRef]
- Werner, F.; Balbinot Junior, A.A.; Franchini, J.C.; Ferreira, A.S.; de Aguiar e Silva, M.A. Agronomic performance of soybean cultivars in an agroforestry system1. Pesqui. Agropecuária Trop. 2017, 47, 279–285. [Google Scholar] [CrossRef]
- Adams, T.C.; Brye, K.R.; Purcell, L.C.; Ross, J.; Gbur, E.E.; Savin, M.C. Soil property predictors of soybean yield using yield contest sites. J. Crop Improv. 2017, 31, 816–829. [Google Scholar] [CrossRef]
- Martin, N.F.; Bollero, A.G.; Bullock, D.G. Relationship between secondary variables and soybean oil and protein concentration. Trans. ASABE 2007, 50, 1271–1278. [Google Scholar] [CrossRef]
- Anthony, P.; Malzer, G.; Sparrow, S.; Zhang, M. Soybean yield and quality in relation to soil properties. Agron. J. 2012, 104, 1443–1458. [Google Scholar] [CrossRef]
- Islam, A.; Bolton, J. The effect of soil ph on potassium intensity and release of nonexchangeable potassium to ryegrass. J. Agric. Sci. 1970, 75, 571–576. [Google Scholar] [CrossRef]
- Yin, X.; Vyn, T.J. Relationships of isoflavone, oil, and protein in seed with yield of soybean. Agron. J. 2005, 97, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- Sabo, M.; Jug, D.; Jug, I. Effect of reduced tillage on quality traits of soybean [Glycine max (L.) Merr.]. Acta Agron. Hungarica 2007, 55, 83–88. [Google Scholar] [CrossRef]
- Spoljar, A.; Kislc, I.; Birkas, M.; Kvaternjak, I.; Marencic, D.; Orehovacki, V. Influence of tillage on soil properties, yield and protein content in maize and soybean grain. J. Environ. Prot. Ecol. 2009, 10, 1013–1031. [Google Scholar]
- Bosaz, L.B.; Gerde, J.A.; Borrás, L.; Cipriotti, P.A.; Ascheri, L.; Campos, M.; Gallo, S.; Rotundo, J.L. Management and environmental factors explaining soybean seed protein variability in central Argentina. F. Crop. Res. 2019, 240, 34–43. [Google Scholar] [CrossRef]
- Seguin, P.; Zheng, W. Potassium, phosphorus, sulfur, and boron fertilization effects on soybean isoflavone content and other seed characteristics. J. Plant Nutr. 2006, 29, 681–698. [Google Scholar] [CrossRef]
Position | Tree Distance (m) | Sowing | Vegetative | Maturity | Mean |
---|---|---|---|---|---|
West | 2.5 | 81.24 ± 2.52 b | 73.45 ± 3.37 b | 68.19 ± 3.31 b | 74.3 ± 2.12 c |
Mid-West | 4.5 | 94.68 ± 0.59 a | 92.2 ± 0.73 a | 87.72 ± 1.53 a | 91.54 ± 0.71 b |
Center | 6.75 | 96.5 ± 0.32 a | 95.2 ± 0.32 a | 92.4 ± 0.79 a | 94.7 ± 0.34 a |
Mid-East | 4.5 | 95.02 ± 0.5 a | 93.75 ± 0.45 a | 90.38 ± 0.68 a | 93.05 ± 0.32 ab |
East | 2.5 | 84.78 ± 1.83 b | 81.35 ± 1.71 b | 74.9 ± 1.95 b | 80.35 ± 1.64 c |
Mean | 90.44 ± 1.02 | 87.19 ± 1.33 | 82.72 ± 1.48 | 86.79 ± 1.18 |
Average Value of Each Plot (0–10 cm Depth) ± Standard Deviation | |||||
---|---|---|---|---|---|
Parameter | Plot A | Plot B | Plot C | Plot D | CV |
Sand | 541 ± 51 | 397 ± 79 | 79 ± 9 | 77 ± 17 | 0.85 |
Silt | 269 ± 33 | 349 ± 46 | 569 ± 6 | 578 ± 3 | 0.35 |
Clay | 196 ± 24 | 249 ± 28 | 332 ± 15 | 304 ± 6 | 0.22 |
pH | 7.51 ± 0.01 | 7.68 ± 0.06 | 7.71 ± 0.01 | 7.62 ± 0.02 | 0.01 |
SOM | 3.12 ± 0.20 | 3.68 ± 0.18 | 3.16 ± 0.14 | 2.96 ± 0.05 | 0.1 |
Total N | 1.94 ± 0.19 | 2.21 ± 0.08 | 1.93 ± 0.11 | 1.86 ± 0.03 | 0.08 |
P2O5 | 272 ± 5 | 225 ± 29 | 86 ± 9 | 77 ± 2 | 0.60 |
K2O | 515 ± 41 | 511 ± 33 | 431 ± 8 | 452 ± 4 | 0.09 |
Average Value of Each Plot (10–30 cm Depth) ± Standard Deviation | |||||
Parameter | Plot A | Plot B | Plot C | Plot D | CV |
Sand | 547 ± 50 | 419 ± 63 | 90 ± 7 | 73 ± 8 | 0.84 |
Silt | 261 ± 22 | 349 ± 51 | 551 ± 7 | 558 ± 9 | 0.35 |
Clay | 189 ± 19 | 247 ± 19 | 354 ± 6 | 350 ± 2 | 0.28 |
pH | 7.54 ± 0.06 | 7.54 ± 0.05 | 7.65 ± 0.09 | 7.57 ± 0.01 | 0.01 |
SOM | 2.23 ± 0.15 | 2.56 ± 0.12 | 2.19 ± 0.03 | 2.24 ± 0.02 | 0.07 |
Total N | 1.53 ± 0.14 | 1.65 ± 0.1 | 1.51 ± 0.06 | 1.45 ± 0.02 | 0.05 |
P2O5 | 254 ± 13 | 225 ± 24 | 77 ± 6 | 98 ± 4 | 0.54 |
K2O | 474 ± 81 | 418 ± 57 | 306 ± 7 | 313 ± 7 | 0.22 |
Position | Dry Weight Grain (g m−2) | Dry Weight of Crop Residues (g m−2) | Dry Weight Total Biomass (g m−2) | Number of Plants (n° m−2) | Plant Height (cm) | Number of Internodes (n° plant−1) | Number of Pods (n° plant−1) | Dry Weight Pods (g pod−1) | Number of Seeds Per Pod (n° pod−1) | 1000 Seeds Weight (g) |
---|---|---|---|---|---|---|---|---|---|---|
Significance | *** | *** | *** | * | *** | *** | * | ** | * | n.s. |
West | 54.9 ± 21.8 c | 80.8 ± 32.8 c | 135.7 ± 54.1 c | 14.0 ± 2.2 b | 32.6 ± 5.7 b | 5.7 ± 0.8 b | 15.9 ± 4.5 b | 0.31 ± 0.03 b | 1.6 ± 0.2 b | 125.4 ± 6.2 |
Mid-West | 161.8 ± 29.9 ab | 186.0 ± 30.3 b | 347.8 ± 58.9 b | 16.5 ± 2.2 ab | 50.7 ± 3.0 a | 8.4 ± 0.4 a | 48.7 ± 13.8 a | 0.40 ± 0.02 a | 2.0 ± 0.1 ab | 138.7 ± 2.7 |
Center | 247.2 ± 25.4 a | 294.9 ± 27.7 a | 542.1 ± 51.1 a | 21.5 ± 2.1 a | 52.8 ± 2.7 a | 8.9 ± 0.4 a | 49.0 ± 8.9 a | 0.43 ± 0.02 a | 2.2 ± 0.1 a | 138.8 ± 2.2 |
Mid-East | 229.5 ± 20.5 ab | 258.2 ± 17.2 ab | 487.7 ± 33.7 ab | 19.8 ± 2.3 ab | 51.1 ± 2.2 a | 9.0 ± 0.4 a | 52.5 ± 7.8 a | 0.40 ± 0.01 a | 1.9 ± 0.1 ab | 139.5 ± 2.3 |
East | 152.4 ± 17.4 b | 200.6 ± 27.6 b | 353.1 ± 35.9 b | 22.4 ± 1.7 a | 46.8 ± 3.3 a | 8.2 ± 0.4 a | 30.2 ± 3.2 ab | 0.39 ± 0.03 ab | 1.9 ± 0.2 ab | 137.5 ± 4.4 |
Position | CP (%) | CF (%) | CP (g m−2) | CF (g m−2) |
---|---|---|---|---|
Significance | ** | n.s. | *** | *** |
West | 30.3 ± 1.3 b | 18.1 ± 1.6 | 17.7 ± 7.4 c | 13.2 ± 4.2 b |
Mid-West | 32.2 ± 1.5 a | 16.8 ± 1.1 | 50.3 ± 8.6 b | 25.6 ± 4.0 ab |
Center | 31.3 ± 1.3 ab | 17.1 ± 1.3 | 82.2 ± 6.7 a | 43.9 ± 7.3 a |
Mid-East | 32.8 ± 1.5 a | 18.5 ± 1.3 | 74.0 ± 6.0 ab | 44.2 ± 6.4 a |
East | 32.7 ± 1.6 a | 15.8 ± 1.0 | 49.9 ± 6.2 b | 23.3 ± 2.4 ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantino, A.; Volpi, I.; Micci, M.; Pecchioni, G.; Bosco, S.; Dragoni, F.; Mele, M.; Ragaglini, G. Effect of Tree Presence and Soil Characteristics on Soybean Yield and Quality in an Innovative Alley-Cropping System. Agronomy 2020, 10, 52. https://doi.org/10.3390/agronomy10010052
Mantino A, Volpi I, Micci M, Pecchioni G, Bosco S, Dragoni F, Mele M, Ragaglini G. Effect of Tree Presence and Soil Characteristics on Soybean Yield and Quality in an Innovative Alley-Cropping System. Agronomy. 2020; 10(1):52. https://doi.org/10.3390/agronomy10010052
Chicago/Turabian StyleMantino, Alberto, Iride Volpi, Martina Micci, Giovanni Pecchioni, Simona Bosco, Federico Dragoni, Marcello Mele, and Giorgio Ragaglini. 2020. "Effect of Tree Presence and Soil Characteristics on Soybean Yield and Quality in an Innovative Alley-Cropping System" Agronomy 10, no. 1: 52. https://doi.org/10.3390/agronomy10010052
APA StyleMantino, A., Volpi, I., Micci, M., Pecchioni, G., Bosco, S., Dragoni, F., Mele, M., & Ragaglini, G. (2020). Effect of Tree Presence and Soil Characteristics on Soybean Yield and Quality in an Innovative Alley-Cropping System. Agronomy, 10(1), 52. https://doi.org/10.3390/agronomy10010052