Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7)
Abstract
:1. Introduction
2. Computational Details
3. Results
3.1. Perfluoroalkane Force Field for Lipid Membrane Environments
3.2. Influence of Small Fluorophilic and Lipophilic Organic Molecules on DPPC Bilayers
3.3. Conformational Space of a Polyphilic Molecule with a Fluorophilic Side Chain Integrated in a DPPC Bilayer
3.4. Characterization of Dynamical Behavior and Orientation of a Cluster of B16/10 Polyphiles in DPPC Membrane Environment
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tschierske, C. Development of Structural Complexity by Liquid-Crystal Self-assembly. Angew. Chem. Int. Ed. 2013, 52, 8828–8878. [Google Scholar] [CrossRef] [PubMed]
- Halley, U.D.; Winkler, D.A. Consistent concepts of self-organization and self-assembly. Complexity 2008, 14, 10–17. [Google Scholar] [CrossRef]
- Ariga, K.; Hill, J.P.; Lee, M.V.; Vinu, A.; Charvet, R.; Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 2008, 9, 014109. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Olubummo, A.; Binder, W.H. Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes. Soft Matter 2012, 8, 4849–4864. [Google Scholar] [CrossRef]
- Hinks, J.; Wang, Y.; Poh, W.H.; Donose, B.C.; Thomas, A.W.; Wuertz, S.; Loo, S.C.J.; Bazan, G.C.; Kjelleberg, S.; Mu, Y. Seviour, Modeling Cell Membrane Perturbation by Molecules Designed for Transmembrane Electron Transfer. Langmuir 2014, 30, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- James, P.V.; Sudeep, P.K.; Suresh, C.H.; Thomas, K.G. Photophysical and Theoretical Investigations of Oligo(p-phenyleneethynylene)s: Effect of Alkoxy Substitution and Alkyne–Aryl Bond Rotations. J. Phys. Chem. A 2006, 110, 4329–4337. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.H.; Whitten, D.G.; Evans, D.G. Computational Study of Bacterial Membrane Disruption by Cationic Biocides: Structural Basis for Water Pore Formation. J. Phys. Chem. B 2014, 118, 9722–9732. [Google Scholar] [CrossRef] [PubMed]
- Crane, A.J.; Martínez-Veracoechea, F.J.; Escobedo, F.A.; Müller, E.A. Molecular dynamics simulation of the mesophase behaviour of a model bolaamphiphilic liquid crystal with a lateral flexible chain. Soft Matter 2008, 4, 1820–1829. [Google Scholar] [CrossRef]
- Hill, E.H.; Stratton, K.; Whitten, D.G.; Evans, D.G. Molecular dynamics simulation study of the interaction of cationic biocides with lipid bilayers: Aggregation effects and bilayer damage. Langmuir 2012, 28, 14849–14854. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci. 2004, 87, 1666–1683. [Google Scholar]
- Krafft, M.P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 2001, 47, 209–228. [Google Scholar] [CrossRef]
- Achilles, A.; Bärenwald, R.; Lechner, B.; Werner, S.; Ebert, H.; Tschierske, C.; Blume, A.; Bacia, K.; Saalwächter, K. Self-Assembly of X-Shaped Bolapolyphiles in Lipid Membranes: Solid-State NMR Investigations. Langmuir 2016, 32, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Schwieger, C.; Achilles, A.; Scholz, S.; Rüger, J.; Bacia, K.; Saalwächter, K.; Kressler, J.; Blume, A. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. Soft Matter 2014, 10, 6147–6160. [Google Scholar] [CrossRef] [PubMed]
- Scholtysek, P.; Achilles, A.; Hoffmann, C.-V.; Lechner, B.-D.; Meister, A.; Tschierske, C.; Saalwächter, K.; Edwards, K.; Blume, A. A T-Shaped Amphiphilic Molecule Forms Closed Vesicles in Water and Bicelles in Mixtures with a Membrane Lipid. J. Phys. Chem. B 2012, 116, 4871–4878. [Google Scholar] [CrossRef] [PubMed]
- Bärenwald, R.; Achilles, A.; Lange, F.; Mendes, T.F.; Saalwächter, K. Applications of Solid-State NMR Spectroscopy for the Study of Lipid Membranes with Polyphilic Guest (Macro)Molecules. Polymers 2016, 8, 439. [Google Scholar] [CrossRef]
- Lechner, B.-D.; Ebert, H.; Prehm, M.; Werner, S.; Meister, A.; Hause, G.; Beerlink, A.; Saalwächter, K.; Bacia, K.; Tschierske, C.; et al. Temperature-Dependent In-Plane Structure Formation of an X-Shaped Bolapolyphile within Lipid Bilayers. Langmuir 2015, 31, 2839–2850. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Ebert, H.; Lechner, B.-D.; Lange, F.; Achilles, A.; Bärenwald, R.; Poppe, S.; Blume, A.; Saalwächter, K.; Tschierske, C.; et al. Dendritic Domains with Hexagonal Symmetry Formed by X-Shaped Bolapolyphiles in Lipid Membranes. Chem. Eur. J. 2015, 21, 8840–8850. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Berrier, C.; Lebaupain, F.; Pucci, B.; Popot, J.-L.; Ghazi, A.; Zito, F. Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem. J. 2007, 403, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Permadi, H.; Lundgren, B.; Andersson, K.; DePierre, J.W. Effects of perfluoro fatty acids on xenobiotic-metabolizing enzymes, enzymes which detoxify reactive forms of oxygen and lipid peroxidation in mouse liver. Biochem. Pharmacol. 1992, 44, 1183–1191. [Google Scholar] [CrossRef]
- Heuvel, J.P.V.; Kuslikis, B.I.; Van Rafelghem, M.J.; Peterson, R.E. Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J. Biochem. Toxicol. 1991, 6, 83–92. [Google Scholar] [CrossRef]
- Repáková, J.; Holopainen, J.M.; Morrow, M.R.; McDonald, M.C.; Capková, P.; Vattulainen, I. Influence of DPH on the Structure and Dynamics of a DPPC Bilayer. Biophys. J. 2005, 88, 3398–3410. [Google Scholar] [CrossRef] [PubMed]
- Scholtysek, P.; Li, Z.; Kressler, J.; Blume, A. Interactions of DPPC with semitelechelic poly(glycerol methacrylate)s with perfluoroalkyl endgroups. Langmuir 2012, 28, 15651–15662. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Hofmann, A.M.; Reuter, S.; Frey, H.; Kressler, J. Mixed layers of DPPC and a linear poly(ethylene glycol)-b-hyperbranched poly(glycerol) block copolymer having a cholesteryl end group. Colloid Polym. Sci. 2012, 290, 579–588. [Google Scholar] [CrossRef]
- Leonenko, Z.V.; Finot, E.; Ma, H.; Dahms, T.E.S.; Cramb, D.T. Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy. Biophys. J. 2004, 86, 3783–3793. [Google Scholar] [CrossRef] [PubMed]
- Rolland, J.-P.; Santaella, C.; Monasse, B.; Vierling, P. Miscibility of binary mixtures of highly fluorinated double-chain glycerophosphocholines and 1,2-dipalmitoylphosphatidylcholine (DPPC). Chem. Phys. Lipids 1997, 85, 135–143. [Google Scholar] [CrossRef]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D.; Pastor, R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef] [PubMed]
- Feller, S.E.; Venable, R.M.; Pastor, R.W. Computer Simulation of a DPPC Phospholipid Bilayer: Structural Changes as a Function of Molecular Surface Area. Langmuir 1997, 13, 6555–6561. [Google Scholar] [CrossRef]
- Pastor, R.W.; MacKerell, A.D. Development of the CHARMM Force Field for Lipids. J. Phys. Chem. Lett. 2011, 2, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Jbeily, M.; Schwieger, C.; Kressler, J. Mixed Langmuir monolayers of perfluorostearic acid and stearic acid studied by epifluorescence microscopy using fluorinated rhodamines and infrared reflection absorption spectroscopy (IRRAS). Colloid Surf. A 2017, 529, 274–285. [Google Scholar] [CrossRef]
- von Rudorff, G.F.; Watermann, T.; Guo, X.-Y.; Sebastiani, D. Conformational Space of a Polyphilic Molecule with a Fluorophilic Side Chain Integrated in a DPPC Bilayer. J. Comput. Chem. 2017, 38, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Brehm, M.; Saddiq, G.; Watermann, T.; Sebastiani, D. Influence of Small Fluorophilic and Lipophilic Organic Molecules on Dipalmitoylphosphatidylcholine Bilayers. J. Phys. Chem. B 2017, 121, 8311–8321. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-Y.; Peschel, C.; Watermann, T.; von Rudorff, G.F.; Sebastiani, D. Cluster Formation of Polyphilic Molecules Solvated in a DPPC Bilayer. 2017; submitted. [Google Scholar]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Von Rudorff, G.F.; Watermann, T.; Sebastiani, D. Perfluoroalkane force field for lipid membrane environments. J. Phys. Chem.B. 2014, 118, 12531–12540. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed]
- Anézo, C.; de Vries, A.H.; Höltje, H.-D.; Tieleman, D.P.; Marrink, S.-J. Methodological Issues in Lipid Bilayer Simulations. J. Phys. Chem. B 2003, 107, 9424–9433. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Madura, J.D. Temperature and Size Dependence for Monte Carlo Simulations of TIP4P Water. Mol. Phys. 1985, 56, 1381–1392. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Brehm, M.; Kirchner, B. TRAVIS—A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories. J. Chem. Inf. Model. 2011, 51, 2007–2023. [Google Scholar] [CrossRef] [PubMed]
- Grace, (c) 1996–2008 Grace Development Team. Available online: http://plasma-gate.weizmann.ac.il/Grace/ (accessed on 8 June 2017).
- Williams, T.; Kelley, C.; Merritt, E.A.; Bersch, C.; Campbell, C.; Cunningham, R.; Denholm, D.; Elber, G.; Fearick, R.; Grammes, C.; et al. Gnuplot 4.6: An Interactive Plotting Program. 2013. Available online: http://gnuplot.sourceforge.net/ (accessed on 13 June 2017).
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef] [PubMed]
- Young, D.C. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Mayne, C.G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J.C. Rapid Parameterization of Small Molecules Using the Force Field Toolkit. J. Comput. Chem. 2013, 34, 2757–27570. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, H.A. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 1881, 248, 127–136. [Google Scholar] [CrossRef]
- Berthelot, D. Surle melange des gaz. C. R. Hebd. Acad. Sci. 1898, 126, 1703–1706. [Google Scholar]
- Padua, A.A.H. Torsion energy profiles and force fields derived from ab initio calculations for simulations of hydrocarbon—Fluorocarbon diblocks and perfluoroalkylbromides. J. Phys. Chem. A. 2002, 106, 10116–10123. [Google Scholar] [CrossRef]
- Riess, J.G. Oxygen Carriers (“Blood Substitutes”) Raison d’Etre, Chemistry, and some Physiology Blut ist ein ganz besondrer Saft. Chem. Rev. 2001, 101, 2797–2920. [Google Scholar] [CrossRef] [PubMed]
- Krafft, M.P.; Riess, J.G. Chemistry, physical chemistry, and uses of molecular fluorocarbon—Hydrocarbon diblocks, triblocks, and related compounds—Unique “apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 2009, 109, 1714–1792. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.Y.; Jones, P.D.; DeCoen, W.; King, L.; Fraker, P.; Newsted, J.; Giesy, J.P. Alterations in cell membrane properties caused by perfluorinated compounds. Comp. Biochem. Phys. C 2003, 135, 77–88. [Google Scholar] [CrossRef]
- Krafft, M.P. Controlling phospholipid self-assembly and film properties using highly fluorinated components—Fluorinated monolayers, vesicles, emulsions and microbubble. Biochimie 2012, 94, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Gadras, C.; Santaella, C.; Vierling, P. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts. J. Control. Release 1999, 57, 29–34. [Google Scholar] [CrossRef]
- Guillod, F.; Greiner, J.; Riess, J.G. Vesicles made of glycophospholipids with homogeneous (two fluorocarbon or two hydrocarbon) or heterogeneous (one fluorocarbon and one hydrocarbon) hydrophobic double chains. Biochim. Biophys. Acta Biomembr. 1996, 1282, 283–292. [Google Scholar] [CrossRef]
- Ravily, V.; Santaella, C.; Vierling, P.; Gulik, A. Phase behavior of fluorocarbon di-O-alkyl-glycerophosphocholines and glycerophosphoethanolamines and long-term shelf stability of fluorinated liposomes. Biochim. Biophys. Acta Biomembr. 1997, 1324, 1–17. [Google Scholar] [CrossRef]
- Hartkamp, R.; Moore, T.C.; Iacovella, C.R.; Thompson, M.A.; Bulsara, P.A.; Moore, D.J.; McCabe, C. Investigating the Structure of Multicomponent Gel-Phase Lipid Bilayers. Biophys. J. 2016, 111, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gkeka, P.; Fuchs, J.E.; Liedl, K.R.; Cournia, Z. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations. Biochim. Biophys. Acta Biomembr. 2016, 1858, 2846–2857. [Google Scholar] [CrossRef] [PubMed]
- Arnarez, C.; Webb, A.; Rouviere, E.; Lyman, E. Hysteresis and the Cholesterol Dependent Phase Transition in Binary Lipid Mixtures with the Martini Model. J. Phys. Chem. B 2016, 120, 13086–13093. [Google Scholar] [CrossRef] [PubMed]
- Hianik, T.; Opstad, C.L.; Sandorova, J.; Garaiova, Z.; Partali, V.; Sliwka, H.-R. Surface properties of polyene glycol phospholipid monolayers. Chem. Phys. Lipids 2017, 202, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Gobrogge, C.A.; Blanchard, H.S.; Walker, R.A. Temperature-Dependent Partitioning of Coumarin 152 in Phosphatidylcholine Lipid Bilayers. J. Phys. Chem. B 2017, 121, 4061–4070. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Prehm, M.; Ungar, G.; Tschierske, C.; Liu, F. Formation of a Double Diamond Cubic Phase by Thermoptropic Liquid Crystalline Self-Assembly of Bundled Bolaamphiphiles. Angew. Chem. 2016, 128, 8464–8467. [Google Scholar] [CrossRef]
- Gao, H.; Cheng, H.; Liu, Q.; Xiao, Y.; Prehm, M.; Cheng, X.; Tschierske, C. Tolane-based bent bolaamphiphiles forming liquid crystalline hexagonal honeycombs with trigonal symmetry. New J. Chem. 2015, 39, 2060–2066. [Google Scholar] [CrossRef]
- Gao, H.; Cheng, H.; Yang, Z.; Prehm, M.; Cheng, X.; Tschierske, C. Synthesis and self-assembly of 5,5′-bis(phenylethynyl)-2,2′-bithiophene-based bolapolyphiles in triangular and square LC honeycombs. J. Mater. Chem. C 2015, 3, 1301–1308. [Google Scholar] [CrossRef]
- Tan, X.; Kong, L.; Dai, H.; Cheng, X.; Liu, F.; Tschierske, C. Triblock Polyphiles through click chemistry: Self-assembled thermotropic cubic phases formed by micellar and monolayer vesicular aggregates. Chem. Eur. J. 2013, 19, 16303–16313. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, E.; Guvench, O.; MacKerell, A.D. CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol. J. Chem. Theory Comput. 2009, 5, 1315–1327. [Google Scholar] [CrossRef] [PubMed]
- MacKerell, A.D. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 2009, 25, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, G.; Orädd, G.; Filippov, A. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separatio. Chem. Phys. Lipids 2006, 141, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.; Papahadjopoulos, D. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry 1975, 14, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Kitabatake, A.; Kosuge, M.; Kurihara, K.; Tochigi, K.; Ochi, K. Liquid-liquid equilibrium data for binary perfluoroalkane (C6 and C8)+n-alkane systems. Fluid Phase Equilib. 2010, 297, 187–191. [Google Scholar] [CrossRef]
- Chu, Q.; Yu, M.S.; Curran, D.P. New fluorous/organic biphasic systems achieved by solvent tuning. Tetrahedron 2007, 63, 9890–9895. [Google Scholar] [CrossRef] [PubMed]
- Cornils, B. Fluorous Biphase Systems—The New Phase-Separation and Immobilization Technique. Angew. Chem. Int. Ed. 1997, 36, 2057–2059. [Google Scholar] [CrossRef]
- Tamm, L.K.; Tatulian, S.A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys. 1997, 30, 365–429. [Google Scholar] [CrossRef] [PubMed]
- Junglas, M.; Danner, B.; Bayerl, T.M. Molecular Order Parameter Profiles and Diffusion Coefficients of Cationic Lipid Bilayers on a Solid Support. Langmuir 2003, 19, 1914–1917. [Google Scholar] [CrossRef]
- McQuarrie, D.A. Statistical Mechanics; University Science Books: Davis, CA, USA, 1976; p. 641. [Google Scholar]
System | Composition | Mixing Ratio | Simulation Temp. [K] | Simulated Time [ns] |
---|---|---|---|---|
Pure | 72 DPPC 2189 HO | — | 323 | 69.3 |
H10 | 72 DPPC 2189 HO 12 CH(CH)CH | 6:1 | 323 | 311.2 |
H5F5 | 72 DPPC 2189 HO 12 CH(CH)(CF)CF | 6:1 | 323 | 301.0 |
F10 | 72 DPPC 2189 HO 12 CF(CF)CF | 6:1 | 323 | 301.5 |
FTOH | 72 DPPC 2189 HO 12 CF(CF)(CH)OH | 6:1 | 323 | 268.9 |
FTOH 333 K | 72 DPPC 2189 HO 12 CF(CF)(CH)OH | 6:1 | 333 | 301.9 |
FTOH 4:1 | 72 DPPC 2189 HO 18 CF(CF)(CH)OH | 4:1 | 323 | 279.4 |
B16/10 1a | 288 DPPC 8756 HO 1 B16/10 | 288:1 | 330 | 50.0 |
B16/10 1b | 288 DPPC 8756 HO 1 B16/10 | 288:1 | 330 | 200.0 |
Pure 330 | 288 DPPC 8756 HO | — | 330 | 400.0 |
B16/10 6 | 288 DPPC 8756 HO 6 B16/10 | 48:1 | 335 | 1000.0 |
Pure 335 | 288 DPPC 8756 HO | — | 335 | 400.0 |
System | [pm/ps] | [pm/ps] | ||
---|---|---|---|---|
Pure | 5.571 | ±0.219 | — | |
H10 | 11.983 | ±0.553 | 90.718 | ±6.702 |
H5F5 | 11.374 | ±0.267 | 48.369 | ±2.869 |
F10 | 1.116 | ±0.035 | 1.428 | ±0.136 |
FTOH | 0.758 | ±0.032 | 0.739 | ±0.079 |
FTOH 333 K | 7.091 | ±0.223 | 10.605 | ±0.757 |
FTOH 4:1 | 0.489 | ±0.022 | 0.480 | ±0.046 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peschel, C.; Brehm, M.; Sebastiani, D. Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7). Polymers 2017, 9, 445. https://doi.org/10.3390/polym9090445
Peschel C, Brehm M, Sebastiani D. Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7). Polymers. 2017; 9(9):445. https://doi.org/10.3390/polym9090445
Chicago/Turabian StylePeschel, Christopher, Martin Brehm, and Daniel Sebastiani. 2017. "Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7)" Polymers 9, no. 9: 445. https://doi.org/10.3390/polym9090445
APA StylePeschel, C., Brehm, M., & Sebastiani, D. (2017). Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7). Polymers, 9(9), 445. https://doi.org/10.3390/polym9090445