# Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Knotoids

## 3. Results

#### 3.1. Analyzing Open Protein Chains Using Knotoids

#### 3.2. A Topological Model for Bonded Open Protein Chains

#### An Application to Complex Lassos

## 4. Discussion

## 5. Materials and Methods

#### 5.1. Construction of Projection Globes and Maps

#### 5.2. The Turaev Loop Bracket

#### 5.3. The Arrow Polynomial

## Supplementary Materials

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

KMT algorithm | Koniaris, Muthukumar, Taylor algorithm |

PDB | Protein Database |

## References

- Mansfield, M.L. Are there knots in proteins? Nat. Struct. Biol.
**1994**, 1, 213–214. [Google Scholar] [CrossRef] [PubMed] - Dabrowski-Tumanski, P.; Stasiak, A.; Sulkowska, J.I. In Search of Functional Advantages of Knots in Proteins. PLoS ONE
**2016**, 11, e0165986. [Google Scholar] [CrossRef] [PubMed] - Virnau, P.; Mirny, L.A.; Kardar, M. Intricate knots in proteins: Function and evolution. PLoS Comput. Biol.
**2006**, 2, 1074–1079. [Google Scholar] [CrossRef] [PubMed] - Goundaroulis, D.; Dorier, J.; Benedetti, F.; Stasiak, A. Studies of global and local entanglements of individual protein chains using the concept of knotoids. Sci. Rep.
**2017**, 7, 6309. [Google Scholar] [CrossRef] [PubMed] - Alexander, K.; Taylor, A.J.; Dennis, M. Proteins analysed as virtual knots. Sci. Rep.
**2017**, 7, 42300. [Google Scholar] [CrossRef] [PubMed] - Kauffman, L.H. Virtual Knot Theory. Eur. J. Comb.
**1999**, 20, 663–691. [Google Scholar] [CrossRef] - Liang, C.; Mislow, K. Knots in proteins. J. Am. Chem. Soc.
**1994**, 116, 11189–11190. [Google Scholar] [CrossRef] - Liang, C.; Mislow, K. Topological features of protein structures: Knots and links. J. Am. Chem. Soc.
**1995**, 117, 4201–4213. [Google Scholar] [CrossRef] - Niemyska, W.; Dabrowski-Tumanski, P.; Kadlof, M.; Haglund, E.; Sułkowski, P.; Sulkowska, J.I. Complex lasso: New entangled motifs in proteins. Sci. Rep.
**2016**, 6, 36895. [Google Scholar] [CrossRef] [PubMed] - Dabrowski-Tumanski, P.; Niemyska, W.; Pasznik, P.; Sulkowska, J.I. LassoProt: Server to analyze biopolymers with lassos. Nucleic Acids Res.
**2016**, 44, W383–W389. [Google Scholar] [CrossRef] [PubMed] - Dabrowski-Tumanski, P.; Sulkowska, J.I. Topological knots and links in proteins. Proc. Natl. Acad. Sci. USA
**2017**, 114, 3415–3420. [Google Scholar] [CrossRef] [PubMed] - Dabrowski-Tumanski, P.; Jarmolinska, A.I.; Niemyska, W.; Rawdon, E.J.; Millett, K.C.; Sulkowska, J.I. LinkProt: A database collecting information about biological links. Nucleic Acids Res.
**2017**, 45, D243–D249. [Google Scholar] [CrossRef] [PubMed] - Tian, W.; Lei, X.; Kauffman, L.H.; Liang, J. A knot polynomial invariant for analysis of Topology of RNA Stems and Protein Disulfide Bonds. In Molecular Based Mathematical Biology; DeGruyter: Berlin, Germany, 2017; Volume 5, pp. 21–30. [Google Scholar]
- Kauffman, L.H.; Magarshak, Y. Vassiliev Knot Invariants and the structure of RNA foldings. In Knot and Applications; Kauffman, L.H., Ed.; World Scientific: Singapore, 1995; pp. 343–394. [Google Scholar]
- Gierut, A.; Niemyska, W.; Dabrowski-Tumanski, P.; Sułkowski, P.; Sulkowska, J.I. PyLasso—A PyMOL plugin to identify lassos. Bioinformatics
**2017**. [Google Scholar] [CrossRef] - Turaev, V. Knotoids. Osaka J. Math
**2012**, 49, 195–223. [Google Scholar] - Gügümcü, N.; Kauffman, L. New Invariants of Knotoids. Eur. J. Comb.
**2017**, 65, 186–229. [Google Scholar] [CrossRef] - Koniaris, K.; Muthukumar, M. Self-entanglement in ring polymers. J. Chem. Phys.
**1991**, 95, 2873–2881. [Google Scholar] [CrossRef] - Taylor, W.R. A deeply knotted protein and how it might fold. Nature
**2000**, 406, 916–919. [Google Scholar] [CrossRef] [PubMed] - Edwards, S.F. The theory of rubber elasticity. Br. Polym. J.
**1977**, 9, 140–143. [Google Scholar] [CrossRef] - Millett, K.; Rawdon, E.; Stasiak, A.; Sulkowska, J. Identifying knots in proteins. Biochem. Soc. Trans.
**2013**, 41, 533–537. [Google Scholar] [CrossRef] [PubMed] - Sulkowska, J.I.; Rawdon, E.J.; Millett, K.C.; Onuchic, J.N.; Stasiak, A. Conservation of complex knotting and slipknotting patterns in proteins. Proc. Natl. Acad. Sci. USA
**2012**, 109, E1715–E1723. [Google Scholar] [CrossRef] [PubMed] - Lua, R.C.; Grosberg, A.Y. Statistics of knots, geometry of conformations, and evolution of proteins. PLoS Comput. Biol.
**2006**, 2, 350–357. [Google Scholar] [CrossRef] [PubMed] - Millett, K.C.; Dobay, A.; Stasiak, A. Linear random knots and their scaling behavior. Macromolecules
**2004**, 38, 601–606. [Google Scholar] [CrossRef] - Jamroz, M.; Niemyska, W.; Rawdon, E.J.; Stasiak, A.; Millett, K.C.; Sulkowski, P.; Sulkowska, J.I. Knotprot: A database of proteins with knots and slipknots. Nucleic Acids Res.
**2015**, 43, D306–D314. [Google Scholar] [CrossRef] [PubMed] - Shi, D.; Yu, X.; Roth, L.; Morizono, H.; Tuchman, M.; Allewell, N.M. Structures of N-acetylornithine transcarbamoylase from Xanthomonas campestris complexed with substrates and substrate analogs imply mechanisms for substrate binding and catalysism. Proteins Struct. Funct. Bioinform.
**2006**, 64, 532–542. [Google Scholar] [CrossRef] [PubMed] - Kauffman, L.H. Invariants of Graphs in Three-Space. Trans. Am. Math. Soc.
**1989**, 311, 697–710. [Google Scholar] [CrossRef] - Bronsoms, S.; Pantoja-Uceda, D.; Gabrijelcic-Geiger, D.; Sanglas, L.; Aviles, F.X.; Santoro, J.; Sommerhoff, C.P.; Arolas, J.L. Oxidative folding and structural analyses of a kunitz-related inhibitor and its disulfide intermediates: Functional implications. J. Mol. Biol.
**2011**, 414, 427–441. [Google Scholar] [CrossRef] [PubMed] - Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res.
**2000**, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] - Rawdon, E.J.; Millett, K.C.; Stasiak, A. Subknots in ideal knots, random knots, and knotted proteins. Sci. Rep.
**2015**, 5, 8298. [Google Scholar] [CrossRef] [PubMed] - Dye, H.A.; Kauffman, L.H. Virtual Crossing Number and the Arrow Polynomial. J. Knot Theory Ramif.
**2009**, 18, 13–35. [Google Scholar] [CrossRef]

**Figure 1.**Various types of knotoids. A knot-type knotoid (

**a**); a proper knotoid (

**b**); and a non-trivial planar knotoid (

**c**).

**Figure 3.**The planar knotoid $k2.{3}^{p}$ is trivial when considered in ${S}^{2}$. We start by placing $k2.{3}^{p}$ in ${S}^{2}$ (

**a**). Then, the lower arc is stretched (

**b**) and pulled towards and past the south pole, around the back (

**c**) and finally is brought up again (

**d**). The application of two Reidemeister I moves completes the proof (

**e,f**). The dotted lines indicate parts of the diagram that are on the back side of the sphere.

**Figure 4.**The projection globes for (

**a**) the uniform closure technique; (

**b**) the spherical knotoids technique; and (

**c**) the planar knotoids technique.

**Figure 5.**The projection maps for (

**a**) the uniform closure technique; (

**b**) the spherical knotoids technique; and (

**c**) the planar knotoids technique.

**Figure 7.**Type D (

**a**,

**b**), and type C (

**c**,

**d**) substitutions. Type D substitutions distinguish (

**e**) sequential, (

**f**) nested and (

**g**) pseudoknot-like bonds by applying to the substitution a polynomial invariant for knotoids like the Turaev loop bracket polynomial or the arrow polynomial.

**Figure 8.**The protein 2LFK as (

**a**) a cartoon; and (

**b**) a polygonal curve. Same colored spheres indicate that there is a bond between them. More precisely, the green dots correspond to the pair of residues with indices 24 and 51, while the red to the pair 52 and 69. Below (

**c**) is the corresponding bonded knotoid diagram and the appropriate substitutions. In the diagram the bonds are represented by colored dashed lines.

**Figure 9.**Distinguishing the lassos (

**a**) ${L}_{0}$; (

**b**) ${L}_{1}$; (

**c**) ${L}_{2}$; (

**d**) $L{L}_{1,1}$; and (

**e**) ${L}_{s}$. The crossing the determines the first piercing of the loop is positive and so a type $D+$ insertion is performed on the lassos. The slipknot in ${L}_{2}$ is detected through progressive trimming of the C terminus of the three-dimensional curve and evaluating each resulting diagram, while the first two lassos are distinguished immediately by the insertion. Insertions in lassos (

**d**,

**e**) distinguish them from the types that were already discussed, but not from one another. Trimming the C terminus of the 3D chain leads to different substructures allowing, thus, their distinction.

**Figure 10.**The Turaev loop bracket rules. (

**a**,

**b**) The smoothing rules; (

**c**) the loop value; (

**d**) the value for nested loops enclosing a long segment; (

**e**) the long segment value.

**Figure 11.**(

**a**) Oriented state expansion; (

**b**) Reduction rules for the arrow polynomial; and (

**c**) a component with one (${\mathsf{\Lambda}}_{1}$) and two zig-zags (${\mathsf{\Lambda}}_{2}$), respectively.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Goundaroulis, D.; Gügümcü, N.; Lambropoulou, S.; Dorier, J.; Stasiak, A.; Kauffman, L.
Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids. *Polymers* **2017**, *9*, 444.
https://doi.org/10.3390/polym9090444

**AMA Style**

Goundaroulis D, Gügümcü N, Lambropoulou S, Dorier J, Stasiak A, Kauffman L.
Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids. *Polymers*. 2017; 9(9):444.
https://doi.org/10.3390/polym9090444

**Chicago/Turabian Style**

Goundaroulis, Dimos, Neslihan Gügümcü, Sofia Lambropoulou, Julien Dorier, Andrzej Stasiak, and Louis Kauffman.
2017. "Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids" *Polymers* 9, no. 9: 444.
https://doi.org/10.3390/polym9090444