# Exploring the Limits of the Geometric Copolymerization Model

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. The Geometric Copolymerization Model

#### 2.2. Monte Carlo Reaction Schemes

^{•}, and a polymer chain ending with X as ∼ X, where X can be one of the monomers A or B, or initiator I. Two types of reactions, initiation and propagation reactions were modeled:

#### 2.3. Datasets and Monte Carlo Parameters

#### 2.4. Log Likelihood Ratio

## 3. Results and Discussion

#### 3.1. Parameter Space Reduction

#### 3.2. Parameter Optimization

#### 3.3. Beyond Living Polymerization

## 4. Conclusions

## Supplementary Materials

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

MS | Mass spectrometry |

ODE | Ordinary differential equation |

LP | Living polymerization |

RLP | Reversible living polymerization |

FRP | Free radical polymerization |

CRP | Controlled radical polymerization |

## References

- Engler, M.S.; Scheubert, K.; Schubert, U.S.; Böcker, S. New Statistical Models for Copolymerization. Polymers
**2016**, 8, 240. [Google Scholar] [CrossRef] - Montaudo, M.S. Mass spectra of copolymers. Mass Spectrom. Rev.
**2002**, 21, 108–144. [Google Scholar] [CrossRef] [PubMed] - Pasch, H.; Schrepp, W. (Eds.) MALDI-TOF Mass Spectrometry of Synthetic Polymers; Springer: Berlin/Heidelberg, Germany, 2003.
- Vivó-Truyols, G.; Staal, B.; Schoenmakers, P.J. Strip-based regression: A method to obtain comprehensive co-polymer architectures from matrix-assisted laser desorption ionisation-mass spectrometry data. J. Chromatogr. A
**2010**, 1217, 4150–4159. [Google Scholar] [CrossRef] [PubMed] - Weidner, S.M.; Falkenhagen, J.; Bressler, I. Copolymer Composition Determined by LC-MALDI-TOF MS Coupling and MassChrom2D Data Analysis. Macromol. Chem. Phys.
**2012**, 213, 1521–3935. [Google Scholar] [CrossRef] - Horský, J.; Walterová, Z. Fingerprint Multiplicity in MALDI-TOF Mass Spectrometry of Copolymers. Macromol. Symp.
**2014**, 339, 9–16. [Google Scholar] [CrossRef] - Engler, M.S.; Crotty, S.; Barthel, M.J.; Pietsch, C.; Knop, K.; Schubert, U.S.; Böcker, S. COCONUT—An Efficient Tool for Estimating Copolymer Compositions from Mass Spectra. Anal. Chem.
**2015**, 87, 5223–5231. [Google Scholar] [CrossRef] [PubMed] - Mayo, F.R.; Lewis, F.M. Copolymerization. I. A Basis for Comparing the Behavior of Monomers in Copolymerization; The Copolymerization of Styrene and Methyl Methacrylate. J. Am. Chem. Soc.
**1944**, 66, 1594–1601. [Google Scholar] [CrossRef] - Kryven, I.; Iedema, P.D. Deterministic Modeling of Copolymer Microstructure: Composition Drift and Sequence Patterns. Macromol. React. Eng.
**2015**, 9, 285–306. [Google Scholar] [CrossRef] - González Díaz, H.; Molina, R.; Uriarte, E. Stochastic molecular descriptors for polymers. 1. Modelling the properties of icosahedral viruses with 3D-Markovian negentropies. Polymer
**2004**, 45, 3845–3853. [Google Scholar] [CrossRef] - González-Díaz, H.; Pérez-Bello, A.; Uriarte, E. Stochastic molecular descriptors for polymers. 3. Markov electrostatic moments as polymer 2D-folding descriptors: RNA-QSAR for mycobacterial promoters. Polymer
**2005**, 46, 6461–6473. [Google Scholar] [CrossRef] - González-Díaz, H.; Saíz-Urra, L.; Molina, R.; Uriarte, E. Stochastic molecular descriptors for polymers. 2. Spherical truncation of electrostatic interactions on entropy based polymers 3D-QSAR. Polymer
**2005**, 46, 2791–2798. [Google Scholar] [CrossRef] - Brandrup, J.; Immergut, E.H.; Grulke, E.A. (Eds.) Polymer Handbook, 4th ed.; Wiley: Hoboken, NJ, USA, 1999.
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.
**1977**, 81, 2340–2361. [Google Scholar] [CrossRef] - Willemse, R.X.E. New Insights into Free-Radical (Co)Polymerization Kinetics. Ph.D. Thesis, University of Technology Eindhoven, Eindhoven, The Netherlands, 2005. [Google Scholar]
- Drache, M.; Schmidt-Naake, G.; Buback, M.; Vana, P. Modeling RAFT polymerization kinetics via Monte Carlo methods: cumyl dithiobenzoate mediated methyl acrylate polymerization. Polymer
**2005**, 46, 8483–8493. [Google Scholar] [CrossRef] - Drache, M. Modeling the Product Composition During Controlled Radical Polymerizations with Mono- and Bifunctional Alkoxyamines. Macromol. Symp.
**2009**, 275-276, 52–58. [Google Scholar] [CrossRef] - Szymanski, R. On the determination of the ratios of the propagation rate constants on the basis of the MWD of copolymer chains: A new Monte Carlo algorithm. e-Polymers
**2009**, 9, 538–552. [Google Scholar] [CrossRef] - Van Steenberge, P.H.M.; D’hooge, D.R.; Wang, Y.; Zhong, M.; Reyniers, M.F.; Konkolewicz, D.; Matyjaszewski, K.; Marin, G.B. Linear Gradient Quality of ATRP Copolymers. Macromolecules
**2012**, 45, 8519–8531. [Google Scholar] [CrossRef] - Drache, M.; Drache, G. Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach. Polymers
**2012**, 4, 1416–1442. [Google Scholar] [CrossRef] - Van Steenberge, P.H.M.; D’hooge, D.R.; Reyniers, M.F.; Marin, G.B. Improved kinetic Monte Carlo simulation of chemical composition-chain length distributions in polymerization processes. Chem. Eng. Sci.
**2014**, 110, 185–199. [Google Scholar] [CrossRef] - Gody, G.; Zetterlund, P.B.; Perrier, S.; Harrisson, S. The limits of precision monomer placement in chain growth polymerization. Nat. Commun.
**2016**, 7, 10514. [Google Scholar] [CrossRef] [PubMed] - Tobita, H. Molecular Weight Distribution of Living Radical Polymers. Macromol. Theory Simul.
**2006**, 15, 12–22. [Google Scholar] [CrossRef] - Engler, M.S.; Crotty, S.; Barthel, M.J.; Pietsch, C.; Schubert, U.S.; Böcker, S. Abundance correction for mass discrimination effects in polymer mass spectra. Rapid Commun. Mass Spectrom.
**2016**, 30, 1233–1241. [Google Scholar] [CrossRef] - Brownlee, J. OAT: The Optimization Algorithm Toolkit; Technical Report; Swinburne University of Technology: Victoria, Australia, 2007. [Google Scholar]
- The Optimization Algorithm Toolkit. Available online: https://sourceforge.net/projects/optalgtoolkit/ (accessed on 1 May 2014).
- Apache Math Commons 3.2. Available online: http://commons.apache.org/proper/commons-math/ (accessed on 1 May 2014).
- Cutello, V.; Nicosia, G. The clonal selection principle for in silico and in vitro computing. In Recent Developments in Biologically Inspired Computing; von Zuben, F.J., Ed.; Idea Group Publishing: Hershey, PA, USA, 2004; pp. 104–147. [Google Scholar]
- Menshoel, O.J.; Goldberg, D.E. Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement; Technical Report; University of Illinois: Champaign, IL, USA, 1999. [Google Scholar]
- Harik, G.R. Finding Multimodal Solutions Using Restricted Tournament Selection. In Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 15–19 July 1995; Morgan Kaufmann: San Fransisco, CA, USA, 1995. [Google Scholar]
- Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput.
**2003**, 11, 1–18. [Google Scholar] [CrossRef] [PubMed] - Mahfoud, S.W. Crowding and preselection revisited. In Proceedings of the Second Conference on Parallel Problem Solving from Nature, Brussels, Belgium, 28–30 September 1992; Elsevier Science Inc.: New York, NY, USA, 1992; pp. 27–36. [Google Scholar]
- De Sousa, F.L.; Ramos, F.M.; Galski, R.L.; Muraoka, I. Generalized extremal optimization: A new meta-heuristic inspired by a model of natural evolution. In Recent Developments in Biologically Inspired Computing; de Castro, L.N., von Zuben, F.J., Eds.; Idea Group Publishing: Hershey, PA, USA, 2005; pp. 41–60. [Google Scholar]
- Back, T.; Fogel, D.B.; Michalwicz, Z. Evolutionary Computation 1—Basic Algorithms and Operators; Institute of Physics (IoP) Publishing: Bristol, UK, 2000. [Google Scholar]
- Mühlenbein, H. How Genetic Algorithms Really Work: Mutation and Hillclimbing. In Proceedings of the Second Conference on Parallel Problem Solving from Nature; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]

**Figure 1.**All possible transitions for copolymer chain lengths $\le 2$. For example, the transition from the initiator state I to the state ${M}_{2,0}^{\mathrm{A}}$ (copolymer chains having two A-monomers and ending in A) corresponds to adding the sequence AA. Note that transitions that add more than two monomers correspond to multiple events. For example, the transition of I to ${M}_{2,1}^{\mathrm{A}}$ corresponds to adding the two sequences BAA and ABA.

**Figure 2.**Filled contours: copolymer fingerprints of $D{P}_{n}=25$ computed by Monte Carlo simulations with no (

**left**) and high applied noise (

**right**). Contours: fingerprints computed by the geometric model using the best parameters computed by the optimization algorithms for each of the fingerprint-generating functions (direct, spline, and ODE).

**Figure 3.**Log likelihood ratios of the results computed by the optimization algorithms as a function of noise. The ratios are averaged over all three algorithms for each fingerprint-generating function (direct, spline, ODE). The higher the ratios, the better the observed data is “explained” by the identified model parameterizations. If the ratio is below zero, the null model achieves a higher likelihood than the geometric model with the given parameterization.

**Figure 4.**Running times of the optimizations averaged over all datasets with degree of polymerization $D{P}_{n}$ = 3, 25, and 45 for each fingerprint-generating function (direct, spline, ODE).

**Figure 5.**Filled contours: copolymer fingerprints of the Monte Carlo simulations of controlled radical polymerization (CRP,

**left**), free radical polymerization (FRP,

**center**), and reversible living polymerization (RLP,

**right**) with the highest used termination and propagation reaction rates of 0.1. Contours: fingerprints computed by the model with the best parameters resulting from the optimizations using the ODE fingerprint-generating function.

**Figure 6.**Log likelihoods (

**left**) and log likelihood ratios (

**right**) of the results from the optimizations using the ODE fingerprint-generating function for the controlled radical polymerization (CRP), free radical polymerization (FRP), and reversible living polymerization (RLP) as a function of termination and depropagation rates.

**Table 1.**Overview of the modeled reactions types for the living polymerization (LP), reversible living polymerization (RLP), free radical polymerization (FRP), and controlled radical polymerization (CRP).

Reaction Type | LP | RLP | FRP | CRP |
---|---|---|---|---|

Initiation | × | × | × | × |

Propagation | × | × | × | × |

Depropagation | × | |||

Termination (Recomb. & Disprop.) | × | × | ||

Initiator Decomposition | × | |||

(De-)Activation | × |

**Table 2.**Overview of the top three optimization algorithms for each fingerprint-generating function, selected based on Supplementary Figures S1–S3. We ranked the results of the algorithms for each dataset based on the log likelihood ratios and counted the ranks.

Algorithm | #Ranks | |||
---|---|---|---|---|

1st | 2nd | 3rd | ||

Direct | Cloning, Information Gain, Aging (CLI) [28] | 4 | 5 | 7 |

Probabilistic Crowding (PC) [29] | 6 | 5 | 5 | |

Restricted Tournament Selection (RTS) [30] | 6 | 6 | 4 | |

Spline | Covariance Matrix Adaptation Evolution Strategy (CMAES) [31] | 3 | 6 | 7 |

Deterministic Crowding (DC) [32] | 3 | 8 | 5 | |

Generalized Extremal Optimization (GEO) [33] | 10 | 2 | 4 | |

ODE | Genetic Algorithm (GA) [34] | 5 | 9 | 2 |

Generalized Extremal Optimization (GEO) [33] | 8 | 0 | 8 | |

Mutation Hill Climber (MHC) [35] | 3 | 7 | 6 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Engler, M.S.; Scheubert, K.; Schubert, U.S.; Böcker, S.
Exploring the Limits of the Geometric Copolymerization Model. *Polymers* **2017**, *9*, 101.
https://doi.org/10.3390/polym9030101

**AMA Style**

Engler MS, Scheubert K, Schubert US, Böcker S.
Exploring the Limits of the Geometric Copolymerization Model. *Polymers*. 2017; 9(3):101.
https://doi.org/10.3390/polym9030101

**Chicago/Turabian Style**

Engler, Martin S., Kerstin Scheubert, Ulrich S. Schubert, and Sebastian Böcker.
2017. "Exploring the Limits of the Geometric Copolymerization Model" *Polymers* 9, no. 3: 101.
https://doi.org/10.3390/polym9030101