Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Rheological Properties of Spinning Solutions
2.3. Wet Spinning Method
2.4. WAXD Structural Analysis
2.5. Thermal Properties Analysis
2.6. Methods of Physical Properties Measurements
3. Results and Discussion
3.1. Influence of the PLA Molecular Structure on the Spinning Process
3.2. Influence of the PLA Molecular Structure on the Thermal Properties of the Fibres
3.3. Influence of the PLA Molecular Structure on the Crystalline Structure of the Fibres
3.4. Influence of the PLA Molecular and Supramolecular Structure on the Mechanical Properties of the Fibres
4. Summary
- For PLA, not only the molar mass but also the d-lactide content affects the rheological properties of the spinning solution. The viscosity of a spinning solution is increased with increasing molar mass, but this effect may be changed by increasing d-lactide isomer content. Moreover, the spinning solution prepared from the polymer that contained the highest d-lactide content (12%) was the most non-Newtonian solution, but the rheological properties of the spinning solution prepared from PLA that contained only 1.5% of d-lactide were close to those of a Newtonian fluid.
- The molecular structure of PLA influences the spinning solution and spinning parameters, such as draw ratio. The fibres could be manufactured at the highest draw ratio using the PLA with the lowest d-lactide content and lowest molar mass.
- The draw ratio affects the molecular ordering of PLA fibres. For the amorphous polymer containing 12% d-lactide isomer, only the mesophase was created, but for the polymers similar to the homopolymer, a mesophase, a crystalline phase, and a disorder-to-order phase transition as a function of draw ratio were observed.
- The creation of the ordered α form at high draw ratio decreased the mechanical parameters of the fibres, which was expected.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huang, S.J. Poly(lactic acid) and copolyesters. In Handbook of Biodegradable Polymers, 1st ed.; Bastioli, C., Ed.; Rapra Technology Limited: Shawbury, UK, 2005. [Google Scholar]
- Ajioka, M.; Enomoto, K.; Suzuki, K.; Yamaguchi, A. The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. J. Polym. Environ. 1995, 3, 225–234. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Kricheldorf, H.R.; Kreiser-Saunders, I.; Jürgens, C.; Wolter, D. Polylactides-synthesis, characterization and medical application. Macromol. Symp. 1996, 103, 85–102. [Google Scholar]
- Bendix, D. Chemical synthesis of polylactide and its copolymers for medical applications. Polym. Degrad. Stab. 1998, 59, 129–135. [Google Scholar] [CrossRef]
- Vink, E.T.; Rabago, K.R.; Glassner, D.A.; Springs, B.; O’Connor, R.P.; Kolstad, J.; Gruber, P.R. The sustainability of NatureWorksTM polylactide polymers and IngeoTM polylactide fibers: An update of the future. Macromol. Biosci. 2004, 4, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Grancarić, A.M.; .Jerković, I.; Tarbuk, A. Bioplastics in textiles. Polimeri 2013, 34, 9–14. [Google Scholar]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Biopolymer blends based on poly(lactic acid): Shear and elongation rheology/structure/blowing process relationships. Polymers 2015, 7, 939–962. [Google Scholar] [CrossRef]
- Perepelkin, K.E. Chemistry and technology of chemical fibres, polylactide fibres: Fabrications, properties, use, prospect, a review. Fibre Chem. 2002, 34, 85–100. [Google Scholar] [CrossRef]
- Kulinski, Z.; Piorkowska, E. Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 2005, 46, 10290–10300. [Google Scholar] [CrossRef]
- Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Fierro, V.; Celzard, A. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 2016, 8, 331. [Google Scholar] [CrossRef]
- Chrzanowska, O.; Struszczyk, M.H.; Krucinska, I.; Puchalski, M.; Herczyńska, L.; Chrzanowski, M. Elaboration of small-diameter vascular prostheses—Selection of appropriate sterilisation method. J. Appl. Polym. Sci. 2014, 131, 40812. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Qi, R.; Hu, X.; Pingkai, J. Polylactide foams prepared by a traditional chemical compression-molding method. J. Appl. Polym. Sci. 2013, 130, 330–337. [Google Scholar] [CrossRef]
- Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; Laurencin, C.T. Poly(lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, B.; Cheng, G. Development and filtration performance of polylactic acid meltblowns. Text. Res. J. 2010, 80, 771–779. [Google Scholar] [CrossRef]
- Czekalski, J.; Krucińska, I.; Kowalska, S.; Puchalski, M. Effect of twist stabilisation and dyeing on the structural and physical properties of agricultural strings. Fibres Text. East. Eur. 2013, 102, 39–44. [Google Scholar]
- Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; et al. Crystallization and melting behavior of poly(l-lactic Acid). Macromolecules 2007, 40, 9463–9469. [Google Scholar] [CrossRef]
- Sawai, D.; Takahashi, K.; Sasashige, A.; Kanamoto, T.; Hyon, S.-H. Preparation of oriented β-form poly(l-lactic acid) by solid-state coextrusion: Effect of extrusion variables. Macromolecules 2003, 36, 3601–3605. [Google Scholar] [CrossRef]
- Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909–8919. [Google Scholar] [CrossRef]
- Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): Molecular weight dependence. Macromolecules 2007, 40, 6898–6905. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357. [Google Scholar] [CrossRef]
- Solarski, S.; Ferreira, M.; Devaux, E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 2005, 46, 11187–11192. [Google Scholar] [CrossRef]
- Mikołajczyk, T.; Król, P.; Boguń, M.; Krucińska, I.; Szparaga, G.; Rabiej, S. Biodegradable fibrous materials based on copolymers of lactic acid obtained by wet spinning. Fibers Text. East. Eur. 2013, 21, 36–41. [Google Scholar]
- Puchalski, M.; Sulak, K.; Chrzanowski, M.; Sztajnowski, S.; Krucińska, I. Effect of processing variables on the thermal and physical properties of poly(l-lactide) spun bond fabrics. Text. Res. J. 2015, 85, 535–547. [Google Scholar] [CrossRef]
- Tsuji, H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromol. Biosci. 2005, 5, 569–597. [Google Scholar] [CrossRef] [PubMed]
- Rabiej, M. Application of immune and genetic algorithms to the identification of a polymer based on its X-ray diffraction curve. J. Appl. Cryst. 2013, 46, 1136–1144. [Google Scholar] [CrossRef]
- Stoclet, G.; Seguela, R.; Vanmansart, C.; Rochas, C.; Lefebvre, J.-M. WAXS study of the structural reorganization of semi-crystalline polylactide under tensile drawing. Polymer 2012, 53, 519–528. [Google Scholar] [CrossRef]
- Narayanan, G.; Chung, C.-C.; Aguda, R.; Boy, R.; Hartman, M.; Mehraban, N.; Gupta, B.S.; Tonelli, A.E. Correlation of the stoichiometries of poly(ε-caprolactone) and α-cyclodextrin pseudorotaxanes with their solution rheology and the molecular orientation, crystallite size, and thermomechanical properties of their nanofibers. RSC Adv. 2016, 6, 111326–111336. [Google Scholar] [CrossRef]
- Narayanan, G.; Aguda, R.; Hartman, M.; Chung, C.-C.; Boy, R.; Gupta, B.S.; Tonelli, A.L. Fabrication and characterization of poly(ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers. Biomacromolecules 2016, 17, 271–279. [Google Scholar] [CrossRef] [PubMed]
Sample | Nature works symbol of PLA | Mw (g/mol) | Mw/Mn | Contents of d-lactide (%) |
---|---|---|---|---|
PLA12 | 4060D | 119,000 | 1.40 | 12 |
PLA2.5 | 2002D | 112,600 | 1.46 | 2.5 |
PLA1.4 | 6201D | 59,100 | 1.29 | 1.4 |
PLA | Polymer concentration (%) | Rheological parameters | |
---|---|---|---|
k (Pa·s) | n | ||
PLA12 | 25 | 22.76 | 0.753 |
PLA12 | 26 | 30.88 | 0.749 |
PLA12 | 27 | 58.18 | 0.719 |
PLA2.5 | 23 | 33.74 | 0.891 |
PLA2.5 | 24 | 56.98 | 0.877 |
PLA2.5 | 25 | 71.41 | 0.862 |
PLA1.4 | 28 | 20.49 | 0.962 |
PLA1.4 | 29 | 32.22 | 0.947 |
PLA1.4 | 30 | 52.88 | 0.878 |
Fibre | Total draw ratio (%) | Linear mass (tex) | Tension of fibre bundle (cN/tex) |
---|---|---|---|
PLA12-F1 | 400 | 158.00 (2.09 *) | 0.17 |
PLA12-F2 | 450 | 98.33 (1.85) | 0.39 |
PLA12-F3 | 500 | 92.83 (1.25) | 2.37 |
PLA12-F4 | 550 | 92.00 (1.01) | 5.51 |
PLA12-F5 | 600 | 80.33 (0.90) | 12.45 |
PLA2.5-F1 | 400 | 121.00 (1.43) | 1.22 |
PLA2.5-F2 | 450 | 112.67 (1.09) | 2.26 |
PLA2.5-F3 | 500 | 90.67 (1.07) | 4.54 |
PLA2.5-F4 | 550 | 72.67 (0.79) | 10.25 |
PLA1.4-F1 | 500 | 96.00 (1.04) | 0.35 |
PLA1.4-F2 | 550 | 91.33 (0.93) | 6.13 |
PLA1.4-F3 | 600 | 85.33 (0.69) | 8.67 |
PLA1.4-F4 | 650 | 68.33 (0.52) | 12.57 |
PLA1.4-F5 | 700 | 60.33 (0.46) | 15.25 |
Fibre | Total draw ratio (%) | Linear mass (tex) | Stress at break (cN/tex) | Strain at break (%) |
---|---|---|---|---|
PLA12-F1 | 400 | 158.00 (2.09 *) | 5.41 (6.75) | 2.61 (11.66) |
PLA12-F2 | 450 | 98.33 (1.85) | 6.93 (5.88) | 4.12 (15.69) |
PLA12-F3 | 500 | 92.83 (1.25) | 15.33 (2.28) | 28.36 (2.68) |
PLA12-F4 | 550 | 92.00 (1.01) | 17.05 (4.18) | 28.25 (2.70) |
PLA12-F5 | 600 | 80.33 (0.90) | 18.63 (4.39) | 26.34 (2.78) |
PLA2.5-F1 | 400 | 121.00 (1.43) | 4.32 (7.46) | 1.92 (8.19) |
PLA2.5-F2 | 450 | 112.67 (1.09) | 21.01 (4.73) | 32.42 (5.97) |
PLA2.5-F3 | 500 | 90.67 (1.07) | 22.22 (5.23) | 23.11 (4.24) |
PLA2.5-F4 | 550 | 72.67 (0.79) | 20.11 (4.70) | 19.65 (4.32) |
PLA1.4-F1 | 500 | 96.00 (1.04) | 18.21 (4.07) | 25.97 (4.50) |
PLA1.4-F2 | 550 | 91.33 (0.93) | 21.39 (5.64) | 22.38 (3.31) |
PLA1.4-F3 | 600 | 85.33 (0.69) | 26.05 (4.50) | 20.97 (3.84) |
PLA1.4-F4 | 650 | 68.33 (0.52) | 24.84 (4.14) | 20.15 (4.08) |
PLA1.4-F5 | 700 | 60.33 (0.46) | 23.16 (9.43) | 18.21 (4.07) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 2017, 9, 18. https://doi.org/10.3390/polym9010018
Puchalski M, Kwolek S, Szparaga G, Chrzanowski M, Krucińska I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers. 2017; 9(1):18. https://doi.org/10.3390/polym9010018
Chicago/Turabian StylePuchalski, Michał, Sylwia Kwolek, Grzegorz Szparaga, Michał Chrzanowski, and Izabella Krucińska. 2017. "Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres" Polymers 9, no. 1: 18. https://doi.org/10.3390/polym9010018
APA StylePuchalski, M., Kwolek, S., Szparaga, G., Chrzanowski, M., & Krucińska, I. (2017). Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers, 9(1), 18. https://doi.org/10.3390/polym9010018