Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Poly(AN-co-ST) co-Polymer Nanofiber
2.2.2. Fabrication of Carboxylated Poly(AN-co-ST) co-Polymer Nanofiber
2.2.3. Characterization of Poly(AN-co-ST) Electrospun Nanofibers
2.2.4. Decolorization Process of Basic Violet 14 Dye onto Carboxylated Poly(AN-co-ST) Nanofibers
2.2.5. Equilibrium Sorption of Dye onto Fabricated Functionalized Nanofibers
2.2.6. Kinetic Sorption of Dye onto Fabricated Functionalized Nanofibers
3. Results and Discussion
3.1. Characteristics Properties of Chemically Modified Fabricated Nanofibers
3.2. Decolorization Process of Basic Violet 14 Dye onto Carboxylated Poly(An-co-St) Nanofibers
3.2.1. Equilibrium Sorption of Dye onto Fabricated Functionalized Nanofibers
3.2.2. Isotherm Analysis of Dye Sorption Process
3.2.3. Kinetic Modeling of Dye Sorption Process onto Fabricated Functionalized Nanofibers
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- El-Sawy, N.M.; Hegazy, E.A.; El-Hag Ali, A.; Abdel Motlab, M.S.; Awadallahf, A. Physicochemical study of radiation-grafted LDPE copolymer and its use in metal ions adsorption. Nucl. Instrum. Methods Phys. Res. B 2007, 264, 227–234. [Google Scholar] [CrossRef]
- Pinar, A.K.; Guven, O. Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J. Appl. Polym. Sci. 2004, 93, 1705–1710. [Google Scholar]
- El-Aassar, M.R.; El-Kady, M.F.; Shokry Hassan, H.; Al-Deyab, S.S. Synthesis and characterization of surface modified electrospun poly(acrylonitrile-co-styrene) nanofibers for dye decolorization. J. Taiwan Inst. Chem. E 2016, 58, 274–282. [Google Scholar] [CrossRef]
- De Santa Maria, L.C.; Amorim, M.C.V.; Aguiara, M.R.M.P.; Guimaraes, P.I.C.; Costa, M.A.S.; de Aguiar, A.P.; Rezende, P.R.; de Carvalho, M.S.; Barbos, F.G.; Andrade, J.M.; et al. Chemical modification of cross-linked resin based on acrylonitrile foranchoring metal ions. React. Funct. Polym. 2001, 49, 133–143. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; El Fawal, G.F.; El-Deeb, N.M.; Shokry Hassan, H.; Mo, X. Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl. Biochem. Biotechnol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Renukdas, S.; Patel, N. Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder. Int. J. Environ. Sci. 2011, 1, 711–726. [Google Scholar]
- Abbasi, M.; Razzaghi, N. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. J. Hazard Mater. 2008, 153, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Wilson, C.; Rusch, K. Use of rhodamine water tracer in the marshland upwelling system. Ground Water. 2004, 42, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Saddeek, Y.; Shokry Hassan, H.; Abd Elfadeel, G. Fabrication and analysis of new bismuth borate glasses containing cement kiln dust. J. Non-Cryst. Solids 2014, 403, 47–52. [Google Scholar] [CrossRef]
- Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 2007, 85, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Mohy Eldina, M.S.; Soliman, E.A.; Elzatahry, A.A.; Elaassar, M.R.; Elkady, M.F.; Abdel Rahman, A.M.; Elsayed Yossef, M.; Eweida, B.Y. Preparation and characterization of imino diacetic acid functionalized alginate beads for removal of contaminants from waste water: I. methylene blue cationic dye model. Desalin. Water Treat. 2012, 40, 15–23. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Yu, H.; Zhan, S.; Cai, M.; Yang, X.; Yu, Y. Facile fabrication of cerium niobate nano-crystalline fibers by electrospinning technology. J. Sol-Gel Sci. Technol. 2011, 58, 394–399. [Google Scholar] [CrossRef]
- Bekiar, V.; Lianos, P. Poly(sodium acrylate) hydrogels as potential pH-sensitive Sorbents for the removal of model organic and Inorganic pollutants from water. Glob. Nest J. 2010, 12, 262–269. [Google Scholar]
- Mohy-Eldin, M.S.; Elkady, M.F.; Abu-Saied, M.A.; Abdel Rahman, A.M.; Soliman, E.A.; Elzatahry, A.A.; Youssef, M.E. Removal of cadmium ions from synthetic aqueous solutions with a novel nanosulfonated poly(glycidyl methacrylate) cation exchanger: Kinetic and equilibrium studies. J. Appl. Polym. Sci. 2010, 118, 3111–3121. [Google Scholar] [CrossRef]
- Bekiari, V.; Lianos, P. Use of Ureasil gels to extract ions from aqueous solutions. J. Hazard Mater. 2007, 147, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Shokry Hassan, H.; Elkady, M.F.; El-Shazly, A.H.; Bamufleh, H.S. Formulation of synthesized zinc oxide nanopowder into hybrid beads for dye separation. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Abd El-Latif, M.M.; Elkady, M.F. Synthesis, characterization and evaluation of nano-zirconium vanadate ion exchanger by using three different preparation techniques. Mater. Res. Bull. 2011, 46, 105–118. [Google Scholar] [CrossRef]
- Washington, J.W.; Jenkins, T.M. Abiotic hydrolysis of fluorotelomer-based polymers as a source of perfluorocarboxylates at the global scale. Environ. Sci. Technol. 2015, 49, 14129–14135. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.F.; EL-Sayed, E.M.; Farag, H.A.; Zaatout, A.A. Assessment of novel synthetized nanozirconium tungstovanadate as cation exchanger for lead ion decontamination. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lee, D.S.; Lee, M.W.; Woo, S.H. Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J. Hazard Mater. 2009, 166, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Boparai, H.K.; Joseph, M.; Carroll, D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.F.; Shokry Hassan, H. Equilibrium and dynamic profiles of azo dye sorption onto innovative nano-zinc oxide biocomposite. Curr. Nanosci. 2015, 11, 805–814. [Google Scholar] [CrossRef]
- Hsu, T.C. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard Mater. 2009, 171, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Dave, P.N.; Subrahmanyam, N.; Sharma, S. Kinetics and thermodynamics of copper ions removal from aqueous solution by use of activated charcoal. Indian J. Chem. Technol. 2009, 16, 234–239. [Google Scholar]
- Varlikli, C.; Bekiari, V.; Kus, M.; Boduroglu, N.; Oner, I.; Lianos, P.; Lyberatos, G.; Icli, S. Adsorption of dyes on Sahara desert sand. J. Hazard Mater. 2009, 170, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.; Abu-Saied, M.; Abdel Rahman, A.; Soliman, E.; Elzatahry, A.; Elsayed Yossef, M.; Mohy Eldin, M. Nano-sulphonated poly(glycidylmethacrylate) cations exchanger for cadmium ions removal: Effects of operating parameters. Desalination 2011, 279, 152–162. [Google Scholar] [CrossRef]
- Bekiari, V.; Lianos, P. Ureasil gels as a highly efficient adsorbent for water purification. Chem. Mater. 2006, 18, 4142–4146. [Google Scholar] [CrossRef]
Equilibrium isotherm | Parameters | Parameter values | Correlation coefficient fitting value (R2) |
---|---|---|---|
Langmuir isotherm | qm (mg/g) | 67.11 | 0.9954 |
K (L/mg) | 0.14 | ||
RL | 0.877–0.0667 | ||
Freundlich isotherm | KF (mg/g) | 2.8 | 0.866 |
nF | 1.1 | ||
Temkin isotherm | KT (L/mg) | 27 | 0.988 |
B (kJ/mol) | 7.1026 |
Kinetic model | Parameter | Dye concentration | ||||||
---|---|---|---|---|---|---|---|---|
1 | 10 | 20 | 40 | 60 | 80 | 100 | ||
Pseudo-first-order | K1 (min−1) | 0.07 | 0.087 | 0.099 | 0.11 | 0.1 | 0.1 | 0.1 |
qe,exp (mg/g) | 0.45 | 4.66 | 9.3 | 18.9 | 28.1 | 37.65 | 46.65 | |
qe,cal (mg/g) | 0.2 | 4.5 | 7.4 | 14.7 | 22.7 | 31.7 | 42.2 | |
R2 | 0.92 | 0.92 | 0.97 | 0.94 | 0.98 | 0.98 | 0.98 | |
Pseudo-second-order | K2 (g/mg·min) | 0.216 | 0.287 | 0.314 | 0.337 | 0.364 | 0.371 | 0.385 |
qe,exp (mg/g) | 0.45 | 4.66 | 9.3 | 18.9 | 28.1 | 37.65 | 46.65 | |
qe,cal (mg/g) | 0.44 | 4.7 | 9.35 | 18.87 | 38.2 | 37.5 | 46.6 | |
R2 | 0.997 | 0.99 | 0.998 | 0.998 | 0.998 | 0.997 | 0.99 | |
Intra-particle Diffusion | Kd (mg/g·min0.5) | 0.078 | 0.92 | 0.16 | 0.654 | 1.37 | 5.12 | 8.465 |
I (mg/g) | 0.89 | 0.92 | 1.09 | 0.03 | 0.23 | 6.26 | 7.36 | |
R2 | 0.975 | 0.95 | 0.968 | 0.979 | 0.954 | 0.858 | 0.967 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkady, M.F.; El-Aassar, M.R.; Hassan, H.S. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers. Polymers 2016, 8, 177. https://doi.org/10.3390/polym8050177
Elkady MF, El-Aassar MR, Hassan HS. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers. Polymers. 2016; 8(5):177. https://doi.org/10.3390/polym8050177
Chicago/Turabian StyleElkady, Marwa F., Mohamed R. El-Aassar, and Hassan Shokry Hassan. 2016. "Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers" Polymers 8, no. 5: 177. https://doi.org/10.3390/polym8050177
APA StyleElkady, M. F., El-Aassar, M. R., & Hassan, H. S. (2016). Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers. Polymers, 8(5), 177. https://doi.org/10.3390/polym8050177