Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes
Abstract
:1. Introduction
2. Linear Thermoplastic Polyurethanes Derived from OL and UD-Based Diols
3. Polyurethane Networks Derived from OL and UD-Based Polyols
4. Summary and Outlook
Acknowledgment
References
- Gandini, A. Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules 2008, 41, 9491–9504. [Google Scholar] [CrossRef]
- Baumann, H.; Bühler, M.; Fochem, H.; Hisrsinger, F.; Zoeblein, H.; Falbe, J. Natural Fats and Oils—Renewable Raw Materials for the Chemical Industry. Angew. Chem. Int. Ed. Engl. 1988, 27, 41–62. [Google Scholar] [CrossRef]
- Biermann, U.; Friedt, W.; Lang, S.; Lühs, W.; Machmüller, G.; Metzger, J.O.; Klaas, M.R.; Schäfer, H.J.; Schneiderüsch, M.P. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Angew. Chem. Int. Ed. 2000, 39, 2206–2224. [Google Scholar]
- Güner, F.S.; Yagci, Y.; Erciyes, T. Polymers from Triglyceride Oils. Prog. Polym. Sci. 2006, 31, 633–670. [Google Scholar] [CrossRef]
- Sharma, V.; Kundu, P.P. Addition Polymers from Natural Oils—A Review. Prog. Polym. Sci. 2006, 31, 983–1008. [Google Scholar] [CrossRef]
- Meier, M.A.R.; Metzger, J.O.; Schubert, U.S. Plant Oil Renewable Resources as Green Alternatives in Polymer Science. Chem. Soc. Rev. 2007, 36, 1778–1802. [Google Scholar] [CrossRef]
- Sharma, V.; Kundu, P.P. Condensation Polymers from Natural Oils. Prog. Polym. Sci. 2008, 33, 1199–1215. [Google Scholar] [CrossRef]
- Lu, Y.; Larock, R.C. Novel Polymeric Materials from Vegetable Oil and Vinyl Monomers: Preparation, Properties, and Applications. ChemSusChem 2009, 2, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, Z.S. Polyurethanes from vegetable Olis. Polym. Rev. 2008, 48, 109–155. [Google Scholar] [CrossRef]
- Harry-O’kuru, R.E.; Holser, R.A.; Abbott, T.P.; Weisleder, D. Synthesis and Characterization of Polyhydroxy Triglycerides from Milkweed Oil. Ind. Crop. Prod. 2002, 15, 51–58. [Google Scholar] [CrossRef]
- Harry-O’kuru, R.E.; Carriere, C.J. Synthesis, Rheological Characterization, and Constitutive Modeling of Polyhydroxy Triglycerides derived from Milkweed Oil. J. Agric. Food Chem. 2002, 50, 3214–3221. [Google Scholar] [CrossRef]
- Sharmin, E.; Ashraf, S.M.; Ahmad, S. Synthesis, Characterization, Antibacterial, and Corrosion Protective Properties of Epoxies, Epoxy-polyols, and Epoxy-polyurethane Coatings from Linseed and Pongamia glabra Seed Oils. Int. J. Biol. Macromol. 2007, 40, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.P.; Zhang, J.F.; Susan, S.X.; Hua, D.H. Synthesis and Properties of Crosslinked Polymers from Functionalized Triglycerides. J. Appl. Polym. Sci. 2008, 110, 647–656. [Google Scholar] [CrossRef]
- Guo, Y.; Hardesty, J.H.; Mannari, V.M.; Massingill, J.J.L. Hydrolysis of Epoxidized Soybean Oil in the Presence of Phosphoric Acid. J. Am. Oil Chem. Soc. 2007, 84, 929–935. [Google Scholar]
- Guo, A.; Cho, Y.; Petrovic, Z.S. Structure and Properties of Halogenated and Non-halogenated Soy-based Polyols. J. Polym. Sci Part A Polym. Chem. 2000, 38, 3900–3910. [Google Scholar] [CrossRef]
- Sharma, B.K.; Adhvaryu, A.; Erhnan, S.Z. Synthesis of Hydroxy Thio-ether Derivatives of Vegetable Oil. J. Agric. Food Chem. 2006, 54, 9866–9872. [Google Scholar] [CrossRef] [PubMed]
- Chuayjuljit, S.; Maungchareon, A.; Saravari, O. Preparation and Properties of Palm Oil-based Rigid Polyurethane Nanocomposite Foams. J. Reinf. Plast. Compos. 2010, 29, 218–225. [Google Scholar] [CrossRef]
- Chuayjuljit, S.; Sangpakdee, T.; Saravari, O. Processing and Properties of Palm Oil-based Rigid Polyurethane Foam. J. Met. Mat. Min. 2007, 17, 17–23. [Google Scholar]
- Gryglewicz, S.; Piechocki, W.; Gryglewicz, G. Preparation of Polyol Esters Based on Vegetable and Animal Fats. Bior. Tech. 2003, 87, 35–39. [Google Scholar] [CrossRef]
- Stirna, U.; Sevastyanova, I.; Misane, M.; Cabulis, U.; Beverte, I. Structure and Properties of Polyurethane Foams Obtained from Rapeseed Oil Polyols. Proc. Estonian Acad. Sci. Chem. 2006, 55, 101–110. [Google Scholar]
- Campanella, A.; Bonnaillie, L.M.; Wool, R.P. Polyurethane Foams from Soyoil-based Polyols. J. Appl. Polym. Sci. 2009, 112, 2567–2578. [Google Scholar] [CrossRef]
- Guo, A.; Demydov, D.; Zhang, W.; Petrovic, Z.S. Polyols and Polyurethanes from Hydroformylation of Soybean Oil. J. Polym. Environ. 2002, 10, 49–52. [Google Scholar] [CrossRef]
- Petrovic, Z.S.; Guo, A.; Javni, I.; Cvetkovic, I.; Hong, D.P. Polyurethane Networks from Polyols Obtained by Hydroformylation of Soybean Oil. Polym. Int. 2008, 57, 275–281. [Google Scholar] [CrossRef]
- Tran, P.; Graiver, D.; Narayan, R. Ozone-mediated Polyol Synthesis from Soybean Oil. J. Am. Oil Chem. Soc. 2005, 82, 653–659. [Google Scholar] [CrossRef]
- Cvetkovic, I.; Milic, J.; Ionescu, M.; Petrovic, Z.S. Preparation of 9-Hydroxynonanoic Acid Methyl Ester by Ozonolysis of Vegetable Oil and its Polycondensation. Hem. Ind. 2008, 62, 319–328. [Google Scholar] [CrossRef]
- Petrovic, Z.S.; Zhang, W.; Javni, I. Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis. Biomacromolecules 2005, 6, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Throckmorton, P.E.; Pryde, E.H. Reductive Ozonolysis of Soybean Oil: Laboratory Optimization of Process Variables. J. Am. Oil Chem. Soc. 1972, 49, 641–642. [Google Scholar] [CrossRef]
- Narine, S.S.; Tue, J.; Kong, X. Production of Polyols from Canola Oil and their Chemical Identification and Physical Properties. J. Am. Oil Chem. Soc. 2007, 84, 173–179. [Google Scholar] [CrossRef]
- Kong, X.; Narine, S.S. Physical Properties of Canola Oil Based Polyurethane Networks. Biomacromolecules 2007, 8, 3584–3589. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Narine, S.S. Physical Properties of Polyurethane Plastic Sheets Produced from Polyols from Canola Oil. Biomacromolecules 2007, 8, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Hojabri, L.; Kong, X.; Narine, S.S. Functional Thermoplastics from Linear Diols and Diisocyanates Produced Entirely from Renewable Lipid Sources. Biomacromolecules 2010, 11, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Petrovic, Z.S.; Das, S.; Wilkes, G.L. Morphology and Properties of Thermoplastic Polyurethanes with Dangling Chains in Ricinoleate-based Soft Segments. Polymer 2008, 49, 4248–4258. [Google Scholar] [CrossRef]
- Das, G.; Trivedi, R.K.; Vasishtha, A.K. Heptaldehyde and Undecylenic Acid from Castor Oil. J. Am. Oil Chem. Soc. 1989, 66, 938–941. [Google Scholar] [CrossRef]
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
- Hoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. 2010, 49, 1540–1573. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click Chemistry: a Multifaceted Toolbox for Small Molecule and Polymer Synthesis. Chem. Soc. Rev. 2010, 39, 1355–1387. [Google Scholar] [CrossRef] [PubMed]
- González, R.J.; Lligadas, G.; Galià, M.; Ronda, J.C.; Cádiz, V. A Green Approach toward Oleic and Undecylenic Acids-derived Polyurethanes. Polymer 2010. submitted. [Google Scholar]
- Roper, T.M.; Guymon, C.A.; Jönsson, E.S.; Hoyle, C.E. Influence of the Alkene Structure on the Mechanism and Kinetics of Thiol-alkene Photopolymerizations with Real-time Infrared Spectroscopy. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 6283–6298. [Google Scholar] [CrossRef]
- Arceo, E.; Marsden, P.; Bergman, R.G.; Ellman, J.A. An Efficient Didehydroxylation Method for the Biomass-derived Polyols Glycerol and Erythritol. Mechanistic Studies of a Formic Acid-mediated Deoxygenation. Chem. Comm. 2009, 23. [Google Scholar]
- Lluch, C.; Ronda, J.C.; Galià, M.; Lligadas, G.; Cádiz, V. Rapid Approach to Biobased Telequelics Through Two One-pot Thiol-ene Click Reactions. Biomacromolecules 2010, 11, 1646–1653. [Google Scholar] [CrossRef] [PubMed]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Biermann, U.; Metzger, J.O. Synthesis and Characterization of Polyurethanes from Epoxidized Methyl Oleate Based Polyether Polyols as Renewable Resources. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 634–645. [Google Scholar] [CrossRef]
- del Rio, E.; Galià, M.; Cádiz, V.; Lligadas, G.; Ronda, J.C. Polymerization of Epoxidized Vegetable Oil Derivatives: Ionic-coordinative Polymerization of Methyl 9,10-Epoxyoleate. J. Polym. Sci. Part A Polym. Chem. 2010. [Google Scholar] [CrossRef]
- del Rio, E.; Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Biobased polyurethanes from polyether polyols obtained by ionic-coordinative polymerization of epoxidized methyl oleate. J. Polym. Sci. Part A Polym. Chem. 2010. [Google Scholar] [CrossRef]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Poly(ether urethane) Networks from Renewable Resources as Candidate Biomaterials: Synthesis and Characterization. Biomacromolecules 2007, 8, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Novel Silicon-containing Polyurethanes from Vegetable Oils as Renewable Resources. Synthesis and Properties. Biomacromolecules 2006, 7, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Hamerton, I. Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers. Prog. Polym. Sci. 2002, 27, 1661–1712. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Gilman, J.W. Fire Retardancy of Polymeric Materials; Grand, A.F., Wilkie, C.A., Eds.; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Polyurethane Networks from Fatty-acid-based Aromatic Triols: Synthesis and Characterization. Biomacromolecules 2007, 8, 1858–1864. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers 2010, 2, 440-453. https://doi.org/10.3390/polym2040440
Lligadas G, Ronda JC, Galià M, Cádiz V. Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers. 2010; 2(4):440-453. https://doi.org/10.3390/polym2040440
Chicago/Turabian StyleLligadas, Gerard, Juan C. Ronda, Marina Galià, and Virginia Cádiz. 2010. "Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes" Polymers 2, no. 4: 440-453. https://doi.org/10.3390/polym2040440
APA StyleLligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers, 2(4), 440-453. https://doi.org/10.3390/polym2040440