Swelling Property and Metal Adsorption of Dialdehyde Crosslinked Poly Aspartate/Alginate Gel Beads
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Sodium Poly Aspartate
2.3. Preparation of Dialdehyde Alginate
2.4. Preparation of SA Composite Gel Beads
2.5. Characterization of SA Composite Gel Beads
2.6. Swelling Property
2.7. Metal Adsorption Property
2.8. Dye Adsorption Property
3. Results and Discussions
3.1. Synthesis of Sodium Poly Aspartate
3.2. Preparation of Dialdehyde Alginate
3.3. Preparation of SA Composite Gel Beads
3.4. Swelling Property
3.4.1. Swelling Property in Distilled Water
3.4.2. Swelling Property in Salt Solution
3.5. Metal Adsorption Property
3.6. Dye Adsorption Property
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ai, F.; Yin, X.; Hu, R.; Ma, H.; Liu, W. Research into the Super-Absorbent Polymers on Agricultural Water. Agric. Water Manag. 2021, 245, 106513. [Google Scholar] [CrossRef]
- Sharma, S.; Dua, A.; Malik, A. Polyaspartic Acid Based Superabsorbent Polymers. Eur. Polym. J. 2014, 59, 363–376. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, X.; Wei, W.; Lin, C.X.; Sun, L.; Wei, Z.; Huang, Q.; Ge, X.; Zrínyi, M.; Chen, Y.M. A Novel Injectable and Self-Biodegradable Poly(Aspartic Acid) Hydrogel. Mater. Des. 2023, 226, 111662. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, H.; Fang, L.; Tan, T. Superabsorbent Hydrogels from Poly(Aspartic Acid) with Salt-, Temperature- and pH-Responsiveness Properties. Polymer 2005, 46, 5368–5376. [Google Scholar] [CrossRef]
- Fang, L.; Zhao, Y.; Tan, T.W. Preparation and Water Absorbent Behavior of Superabsorbent Polyaspartic Acid Resin. J. Polym. Res. 2006, 13, 145–152. [Google Scholar] [CrossRef]
- Appleton, H.; Rosentrater, K.A. Sweet Dreams (Are Made of This): A Review and Perspectives on Aspartic Acid Production. Fermentation 2021, 7, 49. [Google Scholar] [CrossRef]
- Molnar, K.; Juriga, D.; Nagy, P.M.; Sinko, K.; Jedlovszky-Hajdu, A.; Zrinyi, M. Electrospun Poly(Aspartic Acid) Gel Scaffolds for Artificial Extracellular Matrix. Polym. Int. 2014, 63, 1608–1615. [Google Scholar] [CrossRef]
- Soltani, E.; Gholivand, M.B.; Amiri, M. Introduction of Manganese-Iron Phosphide as Hydrogen Evolution Reaction Electrocatalyst Based on Their Poly Aspartic Acid Complexes. Int. J. Hydrogen Energy 2024, 51, 269–280. [Google Scholar] [CrossRef]
- Varaprasad, K.; Jayaramudu, T. A Review of Smart Alginate-Based Biomaterials: Innovations and Challenges in Tissue Engineering and Regenerative Medicine. Int. J. Biol. Macromol. 2026, 337, 149518. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Qin, Y.; Shen, P.; Peng, Q. Structures, Properties and Application of Alginic Acid: A Review. Int. J. Biol. Macromol. 2020, 162, 618–628. [Google Scholar] [CrossRef]
- Lei, J.; Kim, J.-H.; Jeon, Y.S. Preparation and Properties of Alginate/Polyaspartate Composite Hydrogels. Macromol. Res. 2008, 16, 45–50. [Google Scholar] [CrossRef]
- Gotoh, T.; Matsushima, K.; Kikuchi, K.-I. Adsorption of Cu and Mn on Covalently Cross-Linked Alginate Gel Beads. Chemosphere 2004, 55, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Kawabuchi, M.; Sugihara, M.; Sakurai, Y.; Okano, T. Pulsed Dextran Release from Calcium-Alginate Gel Beads. J. Control. Release 1997, 47, 21–29. [Google Scholar] [CrossRef]
- Ling Felicia, W.X.; Rovina, K.; Supri, S.; Matanjun, P.; Mohd Amin, S.F.; Abdul Rahman, M.N. Next-Generation Sodium Alginate Hydrogels for Heavy Metal Ion Removal: Properties, Dynamic Adsorption–Desorption Mechanisms, and Sustainable Application Potential. Polym. Bull. 2025, 82, 10587–10637. [Google Scholar] [CrossRef]
- Chen, M.; Long, A.; Zhang, W.; Wang, Z.; Xiao, X.; Gao, Y.; Zhou, L.; Li, Y.; Wang, J.; Sun, S.; et al. Recent Advances in Alginate-Based Hydrogels for the Adsorption–Desorption of Heavy Metal Ions from Water: A Review. Sep. Purif. Technol. 2025, 353, 128265. [Google Scholar] [CrossRef]
- Soltan, N.; Ning, L.; Mohabatpour, F.; Papagerakis, P.; Chen, X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 2976–2987. [Google Scholar] [CrossRef]
- Park, J.; Nam, J.; Yun, H.; Jin, H.-J.; Kwak, H.W. Aquatic Polymer-Based Edible Films of Fish Gelatin Crosslinked with Alginate Dialdehyde Having Enhanced Physicochemical Properties. Carbohydr. Polym. 2021, 254, 117317. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Ghasemzadeh, H.; Soleyman, R. Synthesis, Characterization, and Swelling Behavior of Alginate-g-poly(Sodium Acrylate)/Kaolin Superabsorbent Hydrogel Composites. J. Appl. Polym. Sci. 2007, 105, 2631–2639. [Google Scholar] [CrossRef]
- Suo, A.; Qian, J.; Yao, Y.; Zhang, W. Synthesis and Properties of Carboxymethyl Cellulose-Graft-poly(Acrylic Acid-Co-acrylamide) as a Novel Cellulose-based Superabsorbent. J. Appl. Polym. Sci. 2007, 103, 1382–1388. [Google Scholar] [CrossRef]
- Jeon, Y.S.; Lei, J.; Kim, J.-H. Dye Adsorption Characteristics of Alginate/Polyaspartate Hydrogels. J. Ind. Eng. Chem. 2008, 14, 726–731. [Google Scholar] [CrossRef]
- Manju, S.; Muraleedharan, C.V.; Rajeev, A.; Jayakrishnan, A.; Joseph, R. Evaluation of Alginate Dialdehyde Cross-linked Gelatin Hydrogel as a Biodegradable Sealant for Polyester Vascular Graft. J. Biomed. Mater. Res. 2011, 98B, 139–149. [Google Scholar] [CrossRef]
- Mukoyama, M.; Takaya, H.; Koichi, S. Preparation of Succinimide Polymer and Aspartic Acid Polymer, JP,09-031195,A. Available online: https://www.j-platpat.inpit.go.jp/c1801/PU/JP-H09-031195/11/en (accessed on 4 January 2026).
- Saller, K.M.; Hubner, G.; Schwarzinger, C. Introducing Free Carboxylic Acid Groups along Polyester Chains Using Dimethylolpropionic Acid as Diol Component. Eur. Polym. J. 2023, 198, 112442. [Google Scholar] [CrossRef]
- Ogata, N. Solvent Effect on Polycondensation Reactions. J. Soc. Chem. Ind. Jpn. 1970, 73, 2279–2285. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L.; Han, J.; Su, M.; Wu, Q. Synthesis of Modified Polyaspartic Acid and Evaluation of Its Scale Inhibition and Dispersion Capacity. Desalination 2015, 358, 42–48. [Google Scholar] [CrossRef]
- Jena, S.R.; Dalei, G.; Das, S.; Nayak, J.; Pradhan, M.; Samanta, L. Harnessing the Potential of Dialdehyde Alginate-Xanthan Gum Hydrogels as Niche Bioscaffolds for Tissue Engineering. Int. J. Biol. Macromol. 2022, 207, 493–506. [Google Scholar] [CrossRef]
- Putri, A.P.; Bose, R.K.; Chalid, M.; Picchioni, F. Rheological and Self-Healing Behavior of Hydrogels Synthesized from l-Lysine-Functionalized Alginate Dialdehyde. Polymers 2023, 15, 1010. [Google Scholar] [CrossRef]
- Gu, Z.; Xie, H.; Huang, C.; Li, L.; Yu, X. Preparation of Chitosan/Silk Fibroin Blending Membrane Fixed with Alginate Dialdehyde for Wound Dressing. Int. J. Biol. Macromol. 2013, 58, 121–126. [Google Scholar] [CrossRef]
- Li, S.-S.; Song, Y.-L.; Yang, H.-R.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R. Modifying Alginate Beads Using Polycarboxyl Component for Enhanced Metal Ions Removal. Int. J. Biol. Macromol. 2020, 158, 493–501. [Google Scholar] [CrossRef]
- Jiang, H.L.; Tang, G.P.; Zhu, K.J. Synthesis of Biodegradable Amphoteric Poly[(Aspartic Acid)-Co-Lysine] by Thermal Polycondensation. Macromol. Biosci. 2001, 1, 266–269. [Google Scholar] [CrossRef]
- Cai, Y.-H.; Zhao, J.-L.; Guo, X.-Y.; Zhang, X.-J.; Zhang, R.-R.; Ma, S.-R.; Cheng, Y.-M.; Cao, Z.-Y.; Xu, Y. Synthesis of Polyaspartic Acid-Capped 2-Aminoethylamino Acid as a Green Water Treatment Agent and Study of Its Inhibition Performance and Mechanism for Calcium Scales. RSC Adv. 2022, 12, 24596–24606. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Tan, X.; Qi, S. High-Temperature-Resistant Scale Inhibitor Polyaspartic Acid-Prolineamide for Inhibiting CaCO3 Scale in Geothermal Water and Speculation of Scale Inhibition Mechanism. Water 2023, 15, 1457. [Google Scholar] [CrossRef]
- Francis, N.L.; Hunger, P.M.; Donius, A.E.; Riblett, B.W.; Zavaliangos, A.; Wegst, U.G.K.; Wheatley, M.A. An Ice-templated, Linearly Aligned Chitosan-alginate Scaffold for Neural Tissue Engineering. J. Biomed. Mater. Res. 2013, 101, 3493–3503. [Google Scholar] [CrossRef]
- Simon, J.; Tsetsgee, O.; Iqbal, N.A.; Sapkota, J.; Ristolainen, M.; Rosenau, T.; Potthast, A. A Fast Method to Measure the Degree of Oxidation of Dialdehyde Celluloses Using Multivariate Calibration and Infrared Spectroscopy. Carbohydr. Polym. 2022, 278, 118887. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Wang, Y.; Shi, F.; Nie, Y.; Liu, T.; Song, K. Effects of Concentration Variation on the Physical Properties of Alginate-Based Substrates and Cell Behavior in Culture. Int. J. Biol. Macromol. 2019, 128, 184–195. [Google Scholar] [CrossRef]
- Teng, D.; Wu, Z.; Zhang, X.; Wang, Y.; Zheng, C.; Wang, Z.; Li, C. Synthesis and Characterization of in Situ Cross-Linked Hydrogel Based on Self-Assembly of Thiol-Modified Chitosan with PEG Diacrylate Using Michael Type Addition. Polymer 2010, 51, 639–646. [Google Scholar] [CrossRef]
- Yan, S.; Wang, T.; Feng, L.; Zhu, J.; Zhang, K.; Chen, X.; Cui, L.; Yin, J. Injectable In Situ Self-Cross-Linking Hydrogels Based on Poly(l-Glutamic Acid) and Alginate for Cartilage Tissue Engineering. Biomacromolecules 2014, 15, 4495–4508. [Google Scholar] [CrossRef] [PubMed]
- Huamani-Palomino, R.G.; Córdova, B.M.; Pichilingue, L.E.R.; Venâncio, T.; Valderrama, A.C. Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination. Polymers 2021, 13, 255. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Sharma, S. Investigation of Swelling/Degradation Behaviour of Alginate Beads Crosslinked with Ca2+ and Ba2+ Ions. React. Funct. Polym. 2004, 59, 129–140. [Google Scholar] [CrossRef]
- Adelnia, H.; Blakey, I.; Little, P.J.; Ta, H.T. Hydrogels Based on Poly(Aspartic Acid): Synthesis and Applications. Front. Chem. 2019, 7, 755. [Google Scholar] [CrossRef]
- Tomida, M.; Yabe, M.; Arakawa, Y.; Kunioka, M. Preparation Conditions and Properties of Biodegradable Hydrogels Prepared by γ-Irradiation of Poly(Aspartic Acid)s Synthesized by Thermal Polycondensation. Polymer 1997, 38, 2791–2795. [Google Scholar] [CrossRef]
- Ren, H.; Gao, Z.; Wu, D.; Jiang, J.; Sun, Y.; Luo, C. Efficient Pb(II) Removal Using Sodium Alginate–Carboxymethyl Cellulose Gel Beads: Preparation, Characterization, and Adsorption Mechanism. Carbohydr. Polym. 2016, 137, 402–409. [Google Scholar] [CrossRef] [PubMed]
- El-Shamy, O.A.A.; El-Azabawy, R.E.; El-Azabawy, O.E. Synthesis and Characterization of Magnetite-Alginate Nanoparticles for Enhancement of Nickel and Cobalt Ion Adsorption from Wastewater. J. Nanomater. 2019, 2019, 6326012. [Google Scholar] [CrossRef]
- Ostolska, I.; Wiśniewska, M. Comparison of the Influence of Polyaspartic Acid and Polylysine Functional Groups on the Adsorption at the Cr2O3—Aqueous Polymer Solution Interface. Appl. Surf. Sci. 2014, 311, 734–739. [Google Scholar] [CrossRef]
- Djelad, A.; Mokhtar, A.; Khelifa, A.; Bengueddach, A.; Sassi, M. Alginate-Whey an Effective and Green Adsorbent for Crystal Violet Removal: Kinetic, Thermodynamic and Mechanism Studies. Int. J. Biol. Macromol. 2019, 139, 944–954. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. Multifunctional Eco-Friendly Sorbent Based on Marine Brown Algae and Bivalve Shells for Subsequent Uptake of Congo Red Dye and Copper(II) Ions. J. Environ. Chem. Eng. 2020, 8, 103915. [Google Scholar] [CrossRef]
- Moharrami, P.; Hazrati, S.; Shakeri, F.; Motamedi, E.; Ariaeenejad, S. Sodium Alginate- and Chitosan-Based Hydrogels with Different Network Charges for Selective Removal of Cationic and Anionic Dyes from Water. Water Qual. Res. J. 2024, 59, 205–222. [Google Scholar] [CrossRef]
- Akin, K.; Ugraskan, V.; Isik, B.; Cakar, F. Adsorptive Removal of Crystal Violet from Wastewater Using Sodium Alginate-Gelatin-Montmorillonite Ternary Composite Microbeads. Int. J. Biol. Macromol. 2022, 223, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. Adsorptive Removal of Congo Red, a Carcinogenic Textile Dye by Chitosan Hydrobeads: Binding Mechanism, Equilibrium and Kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 146–152. [Google Scholar] [CrossRef]
- Kumari, S.; Mankotia, D.; Chauhan, G.S. Crosslinked Cellulose Dialdehyde for Congo Red Removal from Its Aqueous Solutions. J. Environ. Chem. Eng. 2016, 4, 1126–1136. [Google Scholar] [CrossRef]
- Saket, P.; Nagpure, G.; Bala, K.; Joshi, A. Unlocking the Potential of Chitosan and Alginate for Congo Red Dye Removal by Economical Modifications in Batch and Column Study. Biotechnol. Sustain. Mater. 2025, 2, 23. [Google Scholar] [CrossRef]
- Malektaj, H.; Drozdov, A.D.; deClaville Christiansen, J. Swelling of Homogeneous Alginate Gels with Multi-Stimuli Sensitivity. Int. J. Mol. Sci. 2023, 24, 5064. [Google Scholar] [CrossRef]
- Liang, Q.; Jiang, L.; Zheng, J.; Duan, N. Determination of High Concentration Copper Ions Based on Ultraviolet—Visible Spec troscopy Combined with Partial Least Squares Regression Analysis. Processes 2024, 12, 1408. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of Hazardous Dye Crystal Violet from Wastewater by Waste Materials. J. Colloid Interface Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef]

















| (wt%) | SA | ADA | PAsp | Total |
|---|---|---|---|---|
| S2 | 2 | - | - | 2 |
| S3 | 3 | - | - | 3 |
| SD | 1 | 1 | - | 2 |
| SDP0.5 | 1 | 0.5 | 0.5 | 2 |
| SDP1 | 1 | 1 | 1 | 3 |
| SDP3 | 1 | 1 | 3 | 5 |
| SDP5 | 1 | 1 | 5 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yamashita, T.; Tanaka, T. Swelling Property and Metal Adsorption of Dialdehyde Crosslinked Poly Aspartate/Alginate Gel Beads. Polymers 2026, 18, 177. https://doi.org/10.3390/polym18020177
Yamashita T, Tanaka T. Swelling Property and Metal Adsorption of Dialdehyde Crosslinked Poly Aspartate/Alginate Gel Beads. Polymers. 2026; 18(2):177. https://doi.org/10.3390/polym18020177
Chicago/Turabian StyleYamashita, Takuma, and Toshihisa Tanaka. 2026. "Swelling Property and Metal Adsorption of Dialdehyde Crosslinked Poly Aspartate/Alginate Gel Beads" Polymers 18, no. 2: 177. https://doi.org/10.3390/polym18020177
APA StyleYamashita, T., & Tanaka, T. (2026). Swelling Property and Metal Adsorption of Dialdehyde Crosslinked Poly Aspartate/Alginate Gel Beads. Polymers, 18(2), 177. https://doi.org/10.3390/polym18020177

