Amino-POSS Grafted Polyimide-Based Self-Stratifying Composite Coatings for Simultaneously Improved Mechanical and Tribological Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of POSS-PI-Based Gradient Coatings
2.3. Characterization of the POSS-PI Composite Coatings
2.4. Mechanical Tests and Tribological Properties
3. Results
3.1. Characterization of the POSS-PI-Based Gradient Coatings
3.2. Mechanical Properties of OPOSS-PI and OMPOSS-PI Composites
3.3. Tribological Properties of POSS-PI Gradient Composite Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Demian, C.; Liao, H.; Lachat, R.; Costil, S. Investigation of surface properties and mechanical and tribological behaviors of polyimide based composite coatings. Surf. Coat. Technol. 2013, 235, 603–610. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, W.; Li, B.; Gao, W.; Wang, L.; Xu, K.; Fan, J.; Liu, G. Effect of chemical bonding between fluorographene and fluororesin on the anti-corrosion properties of their composite coating. Prog. Org. Coat. 2024, 189, 108339. [Google Scholar] [CrossRef]
- Verma, S.; Verros, G.D.; Arya, R.K. PVA- Bentonite-Water Coatings: Experimental and Simulation Studies. Polymers 2025, 17, 2689. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, M.; Zhao, X.; Zhou, S.; Zou, H. Assessing the Influence of Inorganic Nanoparticles on the Mechanical and Tribological Performance of PPS-Based Composites: A Comparative Study. Polymers 2025, 17, 2573. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, J.; Claesson, P.; Zhang, F.; Pan, J.; Shi, Y. Green synergy: Eco-friendly, high-performance anti-corrosion and wear-resistant coatings utilizing organosolv lignin and polydimethylsiloxane. Prog. Org. Coat. 2024, 190, 10. [Google Scholar] [CrossRef]
- Volksen, W.; Miller, R.D.; Dubois, G. Low dielectric constant materials. Chem. Rev. 2010, 110, 56–110. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, K.; Chen, X. Mechanical, dielectric and thermal properties of polyimide films with sandwich structure. Compos. Struct. 2021, 261, 113305. [Google Scholar] [CrossRef]
- Yuan, R.; Ju, P.; Wu, Y. Silane-grafted graphene oxide improves wear and corrosion resistance of polyimide matrix: Molecular dynamics simulation and experimental analysis. J. Mater. Sci. 2019, 54, 11069–11083. [Google Scholar] [CrossRef]
- Yu, C.; Wan, H.; Chen, L.; Li, H. Marvelous abilities for polyhedral oligomeric silsesquioxane to improve tribological properties of polyamide-imide polytetrafluoroethylene coatings. J. Mater. Sci. 2018, 53, 12616–12627. [Google Scholar] [CrossRef]
- De la Cruz, M.T.; Gamboa, R.G.P.; Dalisay, J.D.E.; Magdaluyo, E.R., Jr. Development and Feasibility Assessment of a Sequential Antenna Deployment System Based on Fiber-Reinforced Shape Memory Polymer Composites. Polymers 2025, 17, 2797. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Y.; Wang, W.; Ren, M.; Li, B.; Fan, C.; Liu, X. Fluorographene with high fluorine/carbon ratio: A nanofiller for preparing low-k polyimide hybrid films. ACS Appl. Mater. Interf. 2014, 6, 16182–16188. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Nam, G.H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Yong Guo, Y.; Lyu, Z.; Yang, X.; Lu, Y.; Ruan, K.; Wu, Y.; Kong, J.; Gu, J. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B 2019, 164, 732–739. [Google Scholar]
- Liu, L.; Lv, F.; Li, P.; Ding, L.; Tong, W.; Chu, P.; Zhang, Y. Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning. Compos. Part A 2016, 84, 292–298. [Google Scholar] [CrossRef]
- Brăileanu, P.I.; Mocanu, M.-T.; Dobrescu, T.G.; Dobrotă, D.; Pascu, N.E. Structure—Property—Performance Relationships in Thermoplastic Polyurethane: Influence of Infill Density and Surface Texture. Polymers 2025, 17, 2716. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z.; Yang, M. Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications. Compos. Part A 2017, 102, 243–252. [Google Scholar] [CrossRef]
- Bode, K.; Ostermeyer, G.P. A comprehensive approach for the simulation of heat and heat-induced phenomena in friction materials. Wear 2014, 311, 47–56. [Google Scholar] [CrossRef]
- Abbasian, A.E.S. Resin migration tracking via real-time monitoring FTIR- ATR in a self-stratifying system. Prog. Org. Coat. Int. Rev. J. 2019, 131, 159–164. [Google Scholar] [CrossRef]
- Zhou, H.W.; Zheng, Y.M.; Ba, M.; Kong, J.J.; Wang, Y.F. Self-stratified fouling release coatings based on polydimethylsiloxane incorporated with acrylate-MQ silicone copolymer. Prog. Org. Coat. Int. Rev. J. 2021, 161, 106539. [Google Scholar] [CrossRef]
- Zahedi, S.; Zaarei, D.; Ghaffarian, S.R.; Jimenez, M. Designing Self-Stratifying Coatings Through the Study of Pigment Migration. Surf. Coat. Int. Part A Coat. J. 2018, 101, 288–293. [Google Scholar]
- Wang, P.; Tang, Y.; Yu, Z. Advanced aromatic polymers with excellent anti-atomic oxygen performance derived from molecular precursor strategy and copolymerization of Polyhedral oligomeric silsesquioxane. ACS Appl. Mater. Interf. 2015, 7, 20144. [Google Scholar] [CrossRef]
- Yu, C.; Ju, P.; Wan, H. Enhanced atomic oxygen resistance and tribological properties of PAI/PTFE composites reinforced by POSS. Prog. Org. Coat. 2020, 139, 105427. [Google Scholar] [CrossRef]
- Khnab, C.; Jia, C.; Chc, B. Inorganic-organic nanocomposite networks: Structure, curing reaction, properties, and hard coating performance. Compos. Sci. Technol. 2021, 218, 109112. [Google Scholar]
- Cordes, D.B.; Lickiss, P.D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173. [Google Scholar] [CrossRef]
- Li, X.; Al-Ostaz, A.; Jaradat, M.; Rahmani, F.; Nouranian, S.; Rushing, G.; Manasrah, A.; Lichtenhan, J. Substantially enhanced durability of polyhedral oligomeric silsequioxane-polyimide nanocomposites against atomic oxygen erosion. Eur. Polym. J. 2017, 92, 233–249. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z.; Yang, M.; Wang, W.; Men, X.; Liu, W. POSS grafted hybrid-fabric composites with a biomimic middle layer for simultaneously improved UV resistance and tribological properties. Compos. Sci. Technol. 2018, 160, 69–78. [Google Scholar] [CrossRef]
- Yari, H.; Mohseni, M.; Messori, M.; Ranjbar, Z. Tribological properties and scratch healing of a typical automotive nano clearcoat modified by a polyhedral oligomeric silsesquioxane compound. Eur. Polym. J. 2014, 60, 79–91. [Google Scholar] [CrossRef]
- Yuan, R.; Ji, L.; Wu, Y.; Chen, L. ‘Plate-anchor’ shaped POSS-functionalized graphene oxide with self-fixing effect in polyimide matrix: Molecular dynamic simulations and experimental analysis. Compos. Sci. Technol. 2019, 176, 103–110. [Google Scholar] [CrossRef]
- Acosta Ortiz, R.; Hernández Jiménez, A.I.; Ku Herrera, J.J.; Yañez Macías, R.; García Valdez, A.E. Design and Performance of 3D-Printed Hybrid Polymers Exhibiting Shape Memory and Self-Healing via Acrylate–Epoxy–Thiol–Ene Chemistry. Polymers 2025, 17, 2594. [Google Scholar] [CrossRef]
- Min, D.; Cui, H.; Hai, Y. Interfacial regions and network dynamics in epoxy/POSS nanocomposites unravelling through their effects on the motion of molecular chains. Compos. Sci. Technol. 2020, 199, 108329. [Google Scholar] [CrossRef]
- Pan, X.F.; Wu, B.; Gao, H.L. Double-Layer Nacre-Inspired Polyimide-Mica Nanocomposite Films with Excellent Mechanical Stability for LEO Environmental Conditions. Adv. Mater. 2021, 34, 2105299. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, Q.; Wang, X.; Li, X.; Deng, G.; Meng, Z.; Xi, K.; Zhan, P. Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties. Compos. Sci. Technol. 2018, 165, 388–396. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Fei, G.; Duan, Y.; Sun, L.; Hao, X. Enhancement of anticorrosion resistance of a fluorinated polyimide matrix by incorporating self-fixing POSS-GO. Prog. Org. Coat. 2024, 187, 12. [Google Scholar] [CrossRef]
- Xu, H.; Cao, X.; Shi, Y.; Cong, T.; Liu, H.; Gao, Y. In-situ formation of POSS layer on the surface of polyimide film and anti-atomic oxygen of SiO2/POSS coatings. Prog. Org. Coat. 2023, 182, 9. [Google Scholar] [CrossRef]
- Li, B.; Wan, H.; Ye, Y.; Chen, L.; Zhou, H.; Chen, J. Investigating the effect of LaF3 on the tribological performances of an environment friendly hydrophilic polyamide imide resin bonded solid lubricating coating. Tribol. Int. 2017, 116, 164–171. [Google Scholar] [CrossRef]















| Coatings | Materials (g) | Content (wt. %) | |||
|---|---|---|---|---|---|
| PMDA | ODA | Mono-POSS | Octa-POSS | ||
| PI | 1.65 | 1.5 | 0 | 0 | 0 |
| OPOSS-PI | 1.65 | 1.5 | 0 | 0.03 | 1 |
| 0.06 | 2 | ||||
| 0.09 | 3 | ||||
| 0.12 | 4 | ||||
| 0.15 | 5 | ||||
| OMPOSS-PI | 1.65 | 1.5 | 0.015 | 0.015 | 1 |
| 0.03 | 0.03 | 2 | |||
| 0.045 | 0.045 | 3 | |||
| 0.06 | 0.06 | 4 | |||
| 0.075 | 0.075 | 5 | |||
| Coatings | Content (%) | |||||
|---|---|---|---|---|---|---|
| C-Si | C-C | C-N | C-O | C-O-C | C=O | |
| PI | 0 | 73.32 | 11.75 | 4.38 | 2.76 | 7.79 |
| OPOSS-PI | 3.08 | 62.95 | 13.34 | 8.17 | 2.01 | 10.45 |
| OMPOSS-PI | 5.03 | 72.51 | 10.62 | 3.92 | 5.31 | 2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, C.; Zhang, P.; Wei, M.; Wang, Q.; Zhang, W. Amino-POSS Grafted Polyimide-Based Self-Stratifying Composite Coatings for Simultaneously Improved Mechanical and Tribological Properties. Polymers 2026, 18, 45. https://doi.org/10.3390/polym18010045
Yu C, Zhang P, Wei M, Wang Q, Zhang W. Amino-POSS Grafted Polyimide-Based Self-Stratifying Composite Coatings for Simultaneously Improved Mechanical and Tribological Properties. Polymers. 2026; 18(1):45. https://doi.org/10.3390/polym18010045
Chicago/Turabian StyleYu, Chuanyong, Peng Zhang, Min Wei, Qiwei Wang, and Wei Zhang. 2026. "Amino-POSS Grafted Polyimide-Based Self-Stratifying Composite Coatings for Simultaneously Improved Mechanical and Tribological Properties" Polymers 18, no. 1: 45. https://doi.org/10.3390/polym18010045
APA StyleYu, C., Zhang, P., Wei, M., Wang, Q., & Zhang, W. (2026). Amino-POSS Grafted Polyimide-Based Self-Stratifying Composite Coatings for Simultaneously Improved Mechanical and Tribological Properties. Polymers, 18(1), 45. https://doi.org/10.3390/polym18010045

