Effect of Bead Geometry and Layer Time on Microstructure and Thermomechanical Properties of Large-Format Polymer Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Print Parameters
2.2. Microscopy
2.3. CTE Testing
2.4. Transient Heat Transfer Model
2.5. Mechanical Testing
3. Results and Discussion
3.1. Microscopy Results
3.2. DIC Oven Strain Plots
3.3. DIC Oven CTE Testing
3.4. Thermal Model Results
3.5. Mechanical Testing Results
3.6. Further Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duty, C.E.; Kunc, V.; Compton, B.; Post, B.; Erdman, D.; Smith, R.; Lind, R.; Lloyd, P.; Love, L. Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials. Rapid Prototyp. J. 2017, 23, 181–189. [Google Scholar] [CrossRef]
- Vicente, C.M.S.; Sardinha, M.; Reis, L.; Ribeiro, A.; Leite, M. Large-Format Additive Manufacturing of Polymer Extrusion-Based Deposition Systems: Review and Applications. Prog. Addit. Manuf. 2023, 8, 1257–1280. [Google Scholar] [CrossRef]
- Sánchez, D.M.; De La Mata, M.; Delgado, F.J.; Casal, V.; Molina, S.I. Development of Carbon Fiber Acrylonitrile Styrene Acrylate Composite for Large Format Additive Manufacturing. Mater. Des. 2020, 191, 108577. [Google Scholar] [CrossRef]
- Duty, C.E.; Drye, T.; Franc, A. Material Development for Tooling Applications Using Big Area Additive Manufacturing (BAAM); U.S. Department of Energy, Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2015; ORNL/TM-2015/78, 1209207.
- Post, B.K.; Lind, R.F.; Lloyd, P.D.; Kunc, V.; Linhal, J.M.; Love, L.J. The Economics of Big Area Additive Manufacturing. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 8–10 August 2016; p. 7. [Google Scholar]
- Post, B.; Richardson, B.; Lind, R.; Love, L.J.; Lloyd, P.; Kunc, V.; Rhyne, B.J.; Roschli, A.; Hannan, J.; Nolet, S.; et al. Big area additive manufacturing application in wind turbine molds. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 7–9 August 2017; p. 17. [Google Scholar]
- Wang, Z.; Smith, D.E. Numerical Analysis of Screw Swirling Effects on Fiber Orientation in Large Area Additive Manufacturing Polymer Composite Deposition. Compos. Part B Eng. 2019, 177, 107284. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-8493-4205-9. [Google Scholar]
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The Importance of Carbon Fiber to Polymer Additive Manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef]
- Hassen, A.A.; Dinwiddie, R.B.; Kim, S.; Tekinap, H.L.; Kumar, V.; Lindahl, J.; Yeole, P.; Duty, C.; Vaidya, U.; Wang, H.; et al. Anisotropic Thermal Behavior of Extrusion-Based Large Scale Additively Manufactured Carbon-Fiber Reinforced Thermoplastic Structures. Polym. Compos. 2022, 43, 3678–3690. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Z.; Xie, Z.; Smith, D.E. A Review on Microstructural Formations of Discontinuous Fiber-Reinforced Polymer Composites Prepared via Material Extrusion Additive Manufacturing: Fiber Orientation, Fiber Attrition, and Micro-Voids Distribution. Polymers 2022, 14, 4941. [Google Scholar] [CrossRef]
- Pibulchinda, P.; Barocio, E.; Favaloro, A.J.; Pipes, R.B. Influence of Printing Conditions on the Extrudate Shape and Fiber Orientation in Extrusion Deposition Additive Manufacturing. Compos. Part B Eng. 2023, 261, 110793. [Google Scholar] [CrossRef]
- Markandan, K.; Lai, C.Q. Fabrication, Properties and Applications of Polymer Composites Additively Manufactured with Filler Alignment Control: A Review. Compos. Part B Eng. 2023, 256, 110661. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Compton, B.G.; Post, B.K.; Duty, C.E.; Love, L.; Kunc, V. Thermal Analysis of Additive Manufacturing of Large-Scale Thermoplastic Polymer Composites. Addit. Manuf. 2017, 17, 77–86. [Google Scholar] [CrossRef]
- Seppala, J.E.; Hoon Han, S.; Hillgartner, K.E.; Davis, C.S.; Migler, K.B. Weld Formation during Material Extrusion Additive Manufacturing. Soft Matter 2017, 13, 6761–6769. [Google Scholar] [CrossRef]
- Colon, A.R.; Kazmer, D.O.; Peterson, A.M.; Seppala, J.E. Characterization of Die-Swell in Thermoplastic Material Extrusion. Addit. Manuf. 2023, 73, 103700. [Google Scholar] [CrossRef]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Kumar, V.; Alwekar, S.P.; Kunc, V.; Cakmak, E.; Kishore, V.; Smith, T.; Lindahl, J.; Vaidya, U.; Blue, C.; Theodore, M.; et al. High-Performance Molded Composites Using Additively Manufactured Preforms with Controlled Fiber and Pore Morphology. Addit. Manuf. 2021, 37, 101733. [Google Scholar] [CrossRef]
- Sayah, N.; Smith, D.E. Correlation of Microstructural Features within Short Carbon Fiber/ABS Manufactured via Large-Area Additive-Manufacturing Beads. J. Compos. Sci. 2024, 8, 246. [Google Scholar] [CrossRef]
- Šeta, B.; Sandberg, M.; Brander, M.; Mollah, M.T.; Pokkalla, D.; Kumar, V.; Spangenberg, J. Modeling Fiber Orientation and Strand Shape Morphology in Three-Dimensional Material Extrusion Additive Manufacturing. Compos. Part B Eng. 2023, 266, 110957. [Google Scholar] [CrossRef]
- Chu, T.C.; Ranson, W.F.; Sutton, M.A. Applications of Digital-Image-Correlation Techniques to Experimental Mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Bing, P.; Qian, K.; Xie, H.; Asundi, A. Two-Dimensional Digital Image Correlation for in-Plane Displacement and Strain Measurement: A Review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Bing, P.; Hui-min, X.; Tao, H.; Asundi, A. Measurement of Coefficient of Thermal Expansion of Films Using Digital Image Correlation Method. Polym. Test. 2009, 28, 75–83. [Google Scholar] [CrossRef]
- Lyons, J.S.; Liu, J.; Sutton, M.A. High-Temperature Deformation Measurements Using Digital-Image Correlation. Exp. Mech. 1996, 36, 64–70. [Google Scholar] [CrossRef]
- Spencer, R.; Alwekar, S.; Jo, E.; Hassen, A.A.; Kim, S.; Vaidya, U. Fiber Orientation Evaluation in Reinforced Composites Using Digital Image Correlation and Thermal Excitation. Compos. Part B Eng. 2022, 234, 109713. [Google Scholar] [CrossRef]
- Corum, T.; O’Connell, J.; Brackett, J.; Spencer, R.; Hassen, A.; Duty, C. Characterizing the Thermal-Induced Distortion of Large-Scale Polymer Composite Printed Structures. In Proceedings of the 33rd Annual International Solid Freeform Fabrication Symposium 2022—An Additive Manufacturing Conference, Austin, TX, USA, 25–27 July 2022; pp. 1921–1940. [Google Scholar]
- Corum, T.; O’Connell, J.; Heres, M.; Foote, J.; Duty, C. Characterizing thermomechanical properties of large-format printed composite polymer structures. In Proceedings of the 34th Annual International Solid Freeform Fabrication Symposium 2023—An Additive Manufacturing Conference, Austin, TX, USA, 14–16 August 2023; pp. 1747–1755. [Google Scholar]
- Corum, T.M.; O’Connell, J.C.; Brackett, J.C.; Hassen, A.A.; Duty, C.E. Measuring Thermomechanical Response of Large-Format Printed Polymer Composite Structures via Digital Image Correlation. Addit. Manuf. 2024, 94, 104479. [Google Scholar] [CrossRef]
- Wang, P.H.; Sterkenburg, R.; Kim, G.; He, Y.W. Investigating the Void Content, Fiber Content, and Fiber Orientation of 3D Printed Recycled Carbon Fiber. Key Eng. Mater. 2019, 801, 276–281. [Google Scholar] [CrossRef]
- Yeole, P.; Hassen, A.A.; Kim, S.; Lindahl, J.; Kunc, V.; Franc, A.; Vaidya, U. Mechanical Characterization of High-Temperature Carbon Fiber-Polyphenylene Sulfide Composites for Large Area Extrusion Deposition Additive Manufacturing. Addit. Manuf. 2020, 34, 101255. [Google Scholar] [CrossRef]
- Sayah, N.; Smith, D.E. Effect of Process Parameters on Void Distribution, Volume Fraction, and Sphericity within the Bead Microstructure of Large-Area Additive Manufacturing Polymer Composites. Polymers 2022, 14, 5107. [Google Scholar] [CrossRef]
- Bing, P.; Xie, H.; Wang, Z.; Qian, K.; Wang, Z. Study on Subset Size Selection in Digital Image Correlation for Speckle Patterns. Opt. Express 2008, 16, 7037–7048. [Google Scholar] [CrossRef]
- Corum, T.; Heres, M.; Foote, J.; Duty, C. Influence of Bead Width and Layer Time on the Interlayer Bonding of Large-Format Printed Polymer Composites. In Proceedings of the 36th Annual International Solid Freeform Fabrication Symposium 2023—An Additive Manufacturing Conference, Austin, TX, USA, 10–13 August 2025; pp. 1162–1169. [Google Scholar]
- ASTM D6272; Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending. ASTM International: West Conshohocken, PA, USA, 2010.
- Billah, K.M.M.; Lorenzana, F.A.R.; Martinez, N.L.; Wicker, R.B.; Espalin, D. Thermomechanical Characterization of Short Carbon Fiber and Short Glass Fiber-Reinforced ABS Used in Large Format Additive Manufacturing. Addit. Manuf. 2020, 35, 101299. [Google Scholar] [CrossRef]
- Daniel, I.M.; Ishai, O. Engineering Mechanics of Composite Materials, 2nd ed.; Oxford University Press: New York, NY, USA, 2006; ISBN 978-0-19-515097-1. [Google Scholar]









| Layer Time [s] | Layer Deposition Method | Print Speed [mm/s] | Dwell Time [s] | Bead Width | Flow Rate [mm3/s] | Shear Rate [s−1] | Sample |
|---|---|---|---|---|---|---|---|
| 60 | Continuous | 20 | 0 | Small | 746 | 61 | 1S |
| Medium | 1086 | 89 | 1M | ||||
| Large | 1416 | 115 | 1L | ||||
| Paused | 100 | 48 | Small | 3530 | 288 | 2S | |
| Medium | 5162 | 421 | 2M | ||||
| Large | 6882 | 561 | 2L | ||||
| 120 | Continuous | 10 | 0 | Small | 375 | 31 | 3S |
| Medium | 607 | 49 | 3M | ||||
| Large | 722 | 59 | 3L | ||||
| Paused | 100 | 108 | Small | 3578 | 292 | 4S | |
| Medium | 5225 | 426 | 4M | ||||
| Large | 6750 | 550 | 4L | ||||
| 240 | Continuous | 5 | 0 | Small | 250 | 20 | 5M1 * |
| Medium | 248 | 20 | 5M2 * | ||||
| Large | 367 | 30 | 5L | ||||
| Paused | 100 | 228 | Small | 3620 | 295 | 6S | |
| Medium | 5203 | 424 | 6M | ||||
| Large | 6697 | 546 | 6L |
| Variable [Units] | Value |
|---|---|
| Density, p [kg/m3] | 1140 |
| Specific heat capacity, C [J/kg-K] | 1640 |
| Thermal conductivity, k [W/m-K] | Dependent based on [10] |
| Natural convection coefficient, h [W/m2-K] | 8.5 |
| Emissivity, ɛ [---] | 0.87 |
| Glass transition temperature, Tg [°C] | 110 |
| Deposition temperature, Tdep [°C] | 250 |
| Ambient temperature, T∞ [°C] | 25 |
| Layer height, h [mm] | 5 |
| Analyzed bead length, l [mm] | 1 |
| Bead width, w [mm] | 7.74, 10.68, or 13.99 |
| Sample | Shear Rate [s−1] | Core Region [mm2] | Shell Region [mm2] | Core–Shell Ratio |
|---|---|---|---|---|
| 3S | 31 | 18.6 | 12.6 | 1.5 |
| 3M | 49 | 41.2 | 11.3 | 3.7 |
| 3L | 59 | 51.1 | 11.3 | 4.5 |
| 4S | 292 | 23.0 | 5.2 | 3.8 |
| 4M | 426 | 35.7 | 7.5 | 4.8 |
| 4L | 550 | 47.8 | 10.2 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Corum, T.M.; O’Connell, J.C.; Pankratz, S.; Heres, M.; Foote, J.; Duty, C.E. Effect of Bead Geometry and Layer Time on Microstructure and Thermomechanical Properties of Large-Format Polymer Composites. Polymers 2026, 18, 133. https://doi.org/10.3390/polym18010133
Corum TM, O’Connell JC, Pankratz S, Heres M, Foote J, Duty CE. Effect of Bead Geometry and Layer Time on Microstructure and Thermomechanical Properties of Large-Format Polymer Composites. Polymers. 2026; 18(1):133. https://doi.org/10.3390/polym18010133
Chicago/Turabian StyleCorum, Tyler M., Johnna C. O’Connell, Samuel Pankratz, Maximilian Heres, Jeff Foote, and Chad E. Duty. 2026. "Effect of Bead Geometry and Layer Time on Microstructure and Thermomechanical Properties of Large-Format Polymer Composites" Polymers 18, no. 1: 133. https://doi.org/10.3390/polym18010133
APA StyleCorum, T. M., O’Connell, J. C., Pankratz, S., Heres, M., Foote, J., & Duty, C. E. (2026). Effect of Bead Geometry and Layer Time on Microstructure and Thermomechanical Properties of Large-Format Polymer Composites. Polymers, 18(1), 133. https://doi.org/10.3390/polym18010133

