Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Biomimetic Fibers
2.3. Fabrication of UiO-66-NH2@PLA/Gelatin Nanofibrous Aerogels
2.4. Characterization
2.5. Filtration Performance Measurement
3. Results and Discussion
3.1. Characterization of Bionic Ribbon PLA/Gel Fiber Membrane
3.2. Characterization of PLA/Gel/MOF Nanofibrous Aerogels
3.3. Air Purification Performance of the Aerogels
3.4. Mechanical Performance of UPG-3 Aerogel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Q.; Huang, K.; Liu, J.; Jin, X.; Li, C. Distribution Characteristics of Bioaerosols inside Pig Houses and the Respiratory Tract of Pigs. Ecotoxicol. Environ. Saf. 2021, 212, 112006. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Wang, W.; Ye, X.; Isa, A.M.; Khan, M.T.; Sa, R.; Liu, L.; Ma, T.; Zhang, H. Comparison of Bacterial Community Structure in PM2.5 within Broiler Houses under Different Rearing Systems in China. Sustainability 2022, 14, 1357. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Gao, W.; Liu, Z.; Tian, S.; Shen, R.; Ji, D.; Wang, S.; Wang, L.; Tang, G.; et al. Trends in Particulate Matter and Its Chemical Compositions in China from 2013–2017. Sci. China Earth Sci. 2019, 62, 1857–1871. [Google Scholar] [CrossRef]
- Zhang, Z.; Chai, P.; Wang, J.; Ye, Z.; Shen, P.; Lu, H.; Jin, M.; Gu, M.; Li, D.; Lin, H.; et al. Association of Particulate Matter Air Pollution and Hospital Visits for Respiratory Diseases: A Time-Series Study from China. Environ. Sci. Pollut. Res. 2019, 26, 12280–12287. [Google Scholar] [CrossRef]
- Glendinning, L.; Collie, D.; Wright, S.; Rutherford, K.M.D.; McLachlan, G. Comparing Microbiotas in the Upper Aerodigestive and Lower Respiratory Tracts of Lambs. Microbiome 2017, 5, 145. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhao, B.; Jia, Y.; He, F.; Chen, W. Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. Atmosphere 2022, 13, 452. [Google Scholar] [CrossRef]
- Li, P.; Wang, C.; Zhang, Y.; Wei, F. Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small 2014, 10, 4543–4561. [Google Scholar] [CrossRef]
- Guo, J.; Xu, W.S.; Chen, Y.L.; Lua, A.C. Adsorption of NH3 onto Activated Carbon Prepared from Palm Shells Impregnated with H2SO4. J. Colloid Interface Sci. 2005, 281, 285–290. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, N.; Cao, L.; Yin, X.; Yu, J.; Ding, B. Highly Integrated Polysulfone/Polyacrylonitrile/Polyamide-6 Air Filter for Multilevel Physical Sieving Airborne Particles. ACS Appl. Mater. Interfaces 2016, 8, 29062–29072. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Yu, J.; Luo, W.; Ding, B. Microwave Structured Polyamide-6 Nanofiber/Net Membrane with Embedded Poly(m-Phenylene Isophthalamide) Staple Fibers for Effective Ultrafine Particle Filtration. J. Mater. Chem. A 2016, 4, 6149–6157. [Google Scholar] [CrossRef]
- Tian, H.; Fu, X.; Zheng, M.; Wang, Y.; Li, Y.; Xiang, A.; Zhong, W.-H. Natural Polypeptides Treat Pollution Complex: Moisture-Resistant Multi-Functional Protein Nanofabrics for Sustainable Air Filtration. Nano Res. 2018, 11, 4265–4277. [Google Scholar] [CrossRef]
- Li, Y.; Cao, L.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Semi-Interpenetrating Polymer Network Biomimetic Structure Enables Superelastic and Thermostable Nanofibrous Aerogels for Cascade Filtration of PM2.5. Adv. Funct. Mater. 2020, 30, 1910426. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, L.; Wang, X.; Fu, H.; Li, Y.; Zhang, D.; Huang, J.; Qian, X.; Lai, Y.; Zhang, S. Robust Three-Dimensional Bioinspired Honeycomb Structured Ultra-Elastic Aerogels for High-Temperature Cascade Filtration Applications. J. Clean. Prod. 2024, 442, 141014. [Google Scholar] [CrossRef]
- Cao, L.; Wang, C.; Huang, Y. Structure Optimization of Graphene Aerogel-Based Composites and Applications in Batteries and Supercapacitors. Chem. Eng. J. 2023, 454, 140094. [Google Scholar] [CrossRef]
- Qiao, S.; Zhang, H.; Kang, S.; Quan, J.; Hu, Z.; Yu, J.; Wang, Y.; Zhu, J. Hydrophobic, Pore-Tunable Polyimide/Polyvinylidene Fluoride Composite Aerogels for Effective Airborne Particle Filtration. Macromol. Mater. Eng. 2020, 305, 2000129. [Google Scholar] [CrossRef]
- Su, Q.; Zhu, C.; Gong, A.; Long, S.; Zhang, G.; Wei, Z.; Wang, X.; Yang, J. Novel Multi-Hierarchical Nanofiber Aerogel for High Efficient Filtration of High-Temperature Flue Gas. Sep. Purif. Technol. 2024, 347, 127573. [Google Scholar] [CrossRef]
- Yue, W.; Cao, Y.; Han, R.; Ren, L.; Liu, S.; Liu, F.; He, J.; Shao, W.; Chen, L. A Synergistic Strategy for Fabricating a Highly Flexible Poly(M-phenylene Isophthalamide) Nanofiber-reinforced Polyimide Aerogel for High-temperature Filtration. J. Appl. Polym. Sci. 2023, 140, e54705. [Google Scholar] [CrossRef]
- Strain, I.N.; Wu, Q.; Pourrahimi, A.M.; Hedenqvist, M.S.; Olsson, R.T.; Andersson, R.L. Electrospinning of Recycled PET to Generate Tough Mesomorphic Fibre Membranes for Smoke Filtration. J. Mater. Chem. A 2015, 3, 1632–1640. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, T.; Ren, Y.; Wang, Y.; Yu, R.; Wang, J.; Tu, Q. Preparation of Chitosan Crosslinked with Metal-Organic Framework (MOF-199)@aminated Graphene Oxide Aerogel for the Adsorption of Formaldehyde Gas and Methyl Orange. Int. J. Biol. Macromol. 2021, 193, 2243–2251. [Google Scholar] [CrossRef]
- Shang, M.; Peng, X.; Zhang, J.; Liu, X.; Yuan, Z.; Zhao, X.; Liu, S.; Yu, S.; Yi, X.; Filatov, S. Sodium Alginate-Based Carbon Aerogel-Supported ZIF-8-Derived Porous Carbon as an Effective Adsorbent for Methane Gas. ACS Appl. Mater. Interfaces 2023, 15, 14634–14642. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, B.; Chen, X.; Li, D.; Zhou, C.; Guo, Z.-R.; Xu, W.; Yang, S.; Zhang, J. One-Droplet Synthesis of Polysaccharide/Metal–Organic Framework Aerogels for Gas Adsorption. ACS Appl. Polym. Mater. 2023, 5, 4327–4332. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, M.; Sun, Y.; Cao, C.; Wang, J.; Ge, M.; Cai, W.; Mi, J.; Lai, Y. Porous Carbon Nanofibers Supported Zn@MnO Sorbents with High Dispersion and Loading Content for Hot Coal Gas Desulfurization. Chem. Eng. J. 2023, 464, 142590. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Hu, Y.; Lu, J.; Zhang, M.; Mi, J. Microwave Heating Motivated Performance Promotion and Kinetic Study of Iron Oxide Sorbent for Coal Gas Desulfurization. Fuel 2020, 267, 117215. [Google Scholar] [CrossRef]
- Ru, Z.; Zhang, X.; Zhang, M.; Mi, J.; Cao, C.; Yan, Z.; Ge, M.; Liu, H.; Wang, J.; Zhang, W.; et al. Bimetallic-MOF-Derived ZnxCo3−xO4/Carbon Nanofiber Composited Sorbents for High-Temperature Coal Gas Desulfurization. Environ. Sci. Technol. 2022, 56, 17288–17297. [Google Scholar] [CrossRef] [PubMed]
- Jasuja, H.; Peterson, G.W.; Decoste, J.B.; Browe, M.A.; Walton, K.S. Evaluation of MOFs for Air Purification and Air Quality Control Applications: Ammonia Removal from Air. Chem. Eng. Sci. 2015, 124, 118–124. [Google Scholar] [CrossRef]
- Song, Y.; Chau, J.; Sirkar, K.K.; Peterson, G.W.; Beuscher, U. Membrane-Supported Metal Organic Framework Based Nanopacked Bed for Protection against Toxic Vapors and Gases. Sep. Purif. Technol. 2020, 251, 117406. [Google Scholar] [CrossRef]
- Garibay, S.J.; Cohen, S.M. Isoreticular Synthesis and Modification of Frameworks with the UiO-66 Topology. Chem. Commun. 2010, 46, 7700. [Google Scholar] [CrossRef]
- Zhao, B.; Han, M.; Wang, Q.; Huang, Z.; Liang, Y.; Tumba, K.; Li, M.; Chen, W.; Kamal, M.; Chang, Z.; et al. Polylactic Acid-Based Composite Filter with Multi-Gradient Structure Developed for High-Efficiency Particulate Matter Filtration and NH3 Purification. Sep. Purif. Technol. 2025, 354, 129354. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Q.; Chen, C.; Song, Y.; Zhang, X.; Dong, W.; Zhang, W.; Zhao, B.; Nan, B.; Zhang, J.; et al. Joint Effect of Indoor Size-Fractioned Particulate Matters and Black Carbon on Cardiopulmonary Function and Relevant Metabolic Mechanism: A Panel Study among School Children. Environ. Pollut. 2022, 307, 119533. [Google Scholar] [CrossRef]
- Kaur, S.; Sundarrajan, S.; Rana, D.; Sridhar, R.; Gopal, R.; Matsuura, T.; Ramakrishna, S. Review: The Characterization of Electrospun Nanofibrous Liquid Filtration Membranes. J. Mater. Sci. 2014, 49, 6143–6159. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, S.; You, T.; Zhou, Z.; Zhang, X.; Tang, M.; Sun, Z.; Wang, J.; Hu, J. Application of Microfibrillated Fibers in Robust and Reusable Air Filters with Long Service Time in the Ambient with High Oily Aerosols Concentration. Sep. Purif. Technol. 2022, 295, 121263. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Liu, L.; Yu, J.; Ding, B. High-Performance Filters from Biomimetic Wet-Adhesive Nanoarchitectured Networks. J. Mater. Chem. A 2020, 8, 18955–18962. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Zhang, X.; Zeng, Z.; Tao, R.; Qu, Q.; Zhang, Y.; Zhu, M.; Xiong, R.; Huang, C. Multi-Hierarchical Nanofiber Membrane with Typical Curved-Ribbon Structure Fabricated by Green Electrospinning for Efficient, Breathable and Sustainable Air Filtration. J. Membr. Sci. 2022, 660, 120857. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, B.; Zhao, D.; Li, J.; Tong, J.; Chang, Z.; Liu, X. Evaluation of Conifer and Broad-Leaved Barriers in Intercepting Particulate Matters in a Wind Tunnel. J. Air Waste Manag. Assoc. 2020, 70, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Mann-Lahav, M.; Halabi, M.; Shter, G.E.; Beilin, V.; Balaish, M.; Ein-Eli, Y.; Dekel, D.R.; Grader, G.S. Electrospun Ionomeric Fibers with Anion Conducting Properties. Adv. Funct. Mater. 2020, 30, 1901733. [Google Scholar] [CrossRef]
- Li, Y.; Hua, Y.; Ji, Z.; Wu, Z.; Fan, J.; Liu, Y. Dual-Bionic Nano-Groove Structured Nanofibers for Breathable and Moisture-Wicking Protective Respirators. J. Membr. Sci. 2023, 672, 121257. [Google Scholar] [CrossRef]
- Topuz, F.; Uyar, T. Electrospinning of Gelatin with Tunable Fiber Morphology from Round to Flat/Ribbon. Mater. Sci. Eng. C 2017, 80, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hashimoto, T. A Scenario of a Fiber Formation Mechanism in Electrospinning: Jet Evolves Assemblies of Phase-Separated Strings That Eventually Split into As-Spun Fibers Observed on the Grounded Collector. Macromolecules 2020, 53, 9584–9600. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Zhang, J.; Guo, T.; Li, X.; Xing, W.; Xue, Q. High-Efficiency Separation Performance of Oil-Water Emulsions of Polyacrylonitrile Nanofibrous Membrane Decorated with Metal-Organic Frameworks. Appl. Surf. Sci. 2019, 476, 61–69. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chem. Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Wu, D.-Y.; Wang, S.-S.; Wu, C.-S. Antibacterial Properties and Cytocompatibility of Biobased Nanofibers of Fish Scale Gelatine, Modified Polylactide, and Freshwater Clam Shell. Int. J. Biol. Macromol. 2020, 165, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Sun, Q.; Guo, Z.; Guo, H.; Guo, X.; Huang, J.; Shang, Y.; Zeng, J.; Kang, Z. Electrospinning UiO-66-NH2/Polyacrylonitrile Fibers for Filtration of VOCs. Micropor. Mesopor. Mat. 2022, 343, 112167. [Google Scholar] [CrossRef]
- Mozafari, M.; Abedini, R.; Rahimpour, A. Zr-MOFs-Incorporated Thin Film Nanocomposite Pebax 1657 Membranes Dip-Coated on Polymethylpentyne Layer for Efficient Separation of CO2/CH4. J. Mater. Chem. A 2018, 6, 12380–12392. [Google Scholar] [CrossRef]
- Khatami, F.; Baharian, A.; Akbari-Birgani, S.; Nikfarjam, N. Tubular Scaffold Made by Gelatin/Polylactic Acid Nanofibers for Breast Ductal Carcinoma in Situ Tumor Modeling. J. Drug Deliv. Sci. Technol. 2023, 85, 104606. [Google Scholar] [CrossRef]
- Bakeshlou, Z.; Nikfarjam, N. Thermoregulating Papers Containing Fabricated Microencapsulated Phase Change Materials through Pickering Emulsion Templating. Ind. Eng. Chem. Res. 2020, 59, 20253–20268. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Dang, J.; Wang, S.; Cheng, W.; Ran, Z.; Zhu, H.; Deng, H.; Xiong, C.; Xu, W.; et al. Anticancer and Bone-Enhanced Nano-Hydroxyapatite/Gelatin/Polylactic Acid Fibrous Membrane with Dual Drug Delivery and Sequential Release for Osteosarcoma. Int. J. Biol. Macromol. 2023, 240, 124406. [Google Scholar] [CrossRef]
- Pan, J.; Wang, L.; Shi, Y.; Li, L.; Xu, Z.; Sun, H.; Guo, F.; Shi, W. Construction of Nanodiamonds/UiO-66-NH2 Heterojunction for Boosted Visible-Light Photocatalytic Degradation of Antibiotics. Sep. Purif. Technol. 2022, 284, 120270. [Google Scholar] [CrossRef]
- Yuan, W.; Li, S.; Guan, H.; Zhang, S.; Zhang, Y.; Zhang, M.; Yu, Y.; Chen, X. Preparation and Properties of a Novel Biodegradable Composite Hydrogel Derived from Gelatin/Chitosan and Polylactic Acid as Slow-Release N Fertilizer. Polymers 2023, 15, 997. [Google Scholar] [CrossRef]
- Lv, S.-W.; Liu, J.-M.; Li, C.-Y.; Zhao, N.; Wang, Z.-H.; Wang, S. In Situ Growth of Benzothiadiazole Functionalized UiO-66-NH2 on Carboxyl Modified g-C3 N4 for Enhanced Photocatalytic Degradation of Sulfamethoxazole under Visible Light. Catal. Sci. Technol. 2020, 10, 4703–4711. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Q.; Yan, N.; Sui, G.; Cai, Q.; Deng, X. Structure and Wettability Relationship of Coelectrospun Poly(L-lactic Acid)/Gelatin Composite Fibrous Mats. Polym. Adv. Technol. 2011, 22, 2222–2230. [Google Scholar] [CrossRef]
- Alippilakkotte, S.; Sreejith, L. Benign Route for the Modification and Characterization of Poly(Lactic Acid) (PLA) Scaffolds for Medicinal Application. J. Appl. Polym. Sci. 2018, 135, 46056. [Google Scholar] [CrossRef]
- CEN.EN 779:2012; Particulate Air Filters for General Ventilation—Determination of the Filtration Performance. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- Kim, K.C.; Yu, D.; Snurr, R.Q. Computational Screening of Functional Groups for Ammonia Capture in Metal–Organic Frameworks. Langmuir 2013, 29, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, Y.; Liu, T.; Mo, J.; Zhang, W.; Zhang, S.; Luo, B.; Wang, J.; Qin, Y.; Wang, S.; et al. Air-Permeable Cellulosic Triboelectric Materials for Self-Powered Healthcare Products. Nano Energy 2022, 102, 107739. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, X.; Wang, J.; Lin, J. Nanocellulose Implantation Enriched the Pore Structure of Aerogel for Effective Particulate Matter Removal. Int. J. Biol. Macromol. 2022, 219, 1237–1243. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Ying, Y.; Wang, Z.; Pan, L.; Wang, S. Hierarchical Cu-MOF Hollow Nanowire Modified Copper Mesh for Efficient Antibacterial PM Filtration. Inorg. Chem. Front. 2023, 10, 2457–2465. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, X.; Liu, Y.; Zhang, Z.; Zhang, T.; Gao, H.; Fu, H.; Huang, J.; Qian, X.; Lai, Y.; et al. Sandwich Structured Chitosan-Aerogel Nonwoven Filter with Asymmetric Wettability and Pore Size Differences for High-Efficient Oil-Mist Filtration. J. Environ. Chem. Eng. 2023, 11, 110443. [Google Scholar] [CrossRef]
- Souzandeh, H.; Wang, Y.; Zhong, W.-H. “Green” Nano-Filters: Fine Nanofibers of Natural Protein for High Efficiency Filtration of Particulate Pollutants and Toxic Gases. RSC Adv. 2016, 6, 105948–105956. [Google Scholar] [CrossRef]
Electrospinning Precursors | P6 | P5G1 | P4G2 | P3G3 | P4G2 | P5G1 | G6 |
---|---|---|---|---|---|---|---|
Conductivity (µS cm−1) | 0.031 ± 0.002 | 0.517 ± 0.002 | 0.707 ± 0.002 | 0.905 ± 0.001 | 1.168 ± 0.001 | 1.321 ± 0.002 | 1.528 ± 0.003 |
Samples | Average Pore Diameter (nm) | BET Surface Area (m2/g) |
---|---|---|
PG | 5.48 | 5.55 |
UPG-5 | 7.09 | 7.10 |
UPG-10 | 4.32 | 30.08 |
UPG-15 | 3.37 | 47.30 |
UPG-20 | 2.52 | 81.26 |
UiO-66-NH2 | 2.49 | 814.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Huang, Z.; Han, M.; Predicala, B.; Wang, Q.; Liang, Y.; Li, M.; Liu, X.; Qi, J.; Guo, L. Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification. Polymers 2025, 17, 1234. https://doi.org/10.3390/polym17091234
Zhao B, Huang Z, Han M, Predicala B, Wang Q, Liang Y, Li M, Liu X, Qi J, Guo L. Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification. Polymers. 2025; 17(9):1234. https://doi.org/10.3390/polym17091234
Chicago/Turabian StyleZhao, Bo, Zikun Huang, Mingze Han, Bernardo Predicala, Qiushi Wang, Yunhong Liang, Mo Li, Xin Liu, Jiangtao Qi, and Li Guo. 2025. "Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification" Polymers 17, no. 9: 1234. https://doi.org/10.3390/polym17091234
APA StyleZhao, B., Huang, Z., Han, M., Predicala, B., Wang, Q., Liang, Y., Li, M., Liu, X., Qi, J., & Guo, L. (2025). Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification. Polymers, 17(9), 1234. https://doi.org/10.3390/polym17091234