Physicochemical Characteristics of Chitosan Extracted from Pleurotus ostreatus and Its Anticancer Activity Against the MDA-MB-231 Breast Cancer Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Pleurotus ostreatus
2.2. Production of Chitosan and Extraction of Chitin
2.3. Characterization of Pleurotus ostreatus
2.3.1. Chemical Composition of Pleurotus ostreatus Biomass
2.3.2. Moisture and Ash Content Determination in Biomass
2.4. Characterization of Chitosan
2.4.1. Determination of Nitrogen Content
2.4.2. Determination of Average Viscosity Molecular Weight
- η = KMa;
- η = Intrinsic viscosity;
- K = Constant;
- M = Relative molecular mass average;
- a = Solvent’s relative constant.
2.4.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.4.4. Water-Binding Capacity Determination (WBC)
2.4.5. Fat-Binding Capacity Determination (FBC)
2.4.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.7. Solubility Determination
2.4.8. Degree of Deacetylation
2.5. Real Time PCR for Caspase-3 and β-Actin Genes in Chitosan
2.6. Sulforhodamine B (SRB) Viability Test in Cancer Cells
2.6.1. Cell Culture
2.6.2. Cytotoxicity Assay
2.7. FITC Apoptosis Assay for Cancer Cells
2.7.1. Cell Culture
2.7.2. Flow Cytometry Assay
3. Results
3.1. Biomass of Pleurotus ostreatus and Yield of Chitin and Chitosan
3.2. Characterization of Pleurotus ostreatus Biomass
3.3. Characterization of Produced Chitosan
3.3.1. Chitosan’s Molecular Weight, Intrinsic Viscosity, and Degree of Deacetylation
3.3.2. GC-MS Analysis
3.3.3. Solubility of Chitosan
3.3.4. Capacity of Chitosan to Bind Fat and Water
3.3.5. Fourier Transform Infrared (FTIR) Spectroscopy
3.4. PCR for the RNA Extraction of Selected Chitosan Genes
3.5. SRB Viability Test
3.6. FITC Apoptosis Test
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meegan, M.J.; O’Boyle, N.M. Special issue “Anticancer drugs”. Pharmaceuticals 2019, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures. 2019. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf (accessed on 7 January 2025).
- Ruddy, K.J.; Ganz, P.A. Treatment of nonmetastatic breast cancer. JAMA 2019, 321, 1716–1717. [Google Scholar] [CrossRef]
- Yildiz, S.; Yildiz, U.C.; Gezer, E.D.; Temiz, A. Some lignocellulosic waste used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochem. 2002, 37, 301–306. [Google Scholar] [CrossRef]
- Kues, U.; Liu, Y. Fruiting body production in basidomycetes. Appl. Microbiol. Biotechnol. 2000, 54, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Miles, P.G. Edible Mushrooms and Their Cultivation; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Wang, D.; Sakoda, A.K.; Suzuki, M. Biological efficiency and nutritional values of Pleurotus ostreatus cultivated on spent beer grain. Bioresour. Technol. 2001, 78, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.F.R.; Barros, L.; Abreu, R.M.V. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [Google Scholar] [CrossRef]
- Ramya, R.; Sudha, P.N.; Mahalakshmi, J. Preparation and characterization of chitosan binary blend. Int. J. Sci. Res. Publ. 2012, 2, 1–9. [Google Scholar]
- Kumar, S.; Dutta, J.; Dutta, P. Preparation and characterization of N-heterocyclic chitosan derivative based gels for biomedical applications. Int. J. Biol. Macromol. 2009, 45, 330–337. [Google Scholar] [CrossRef]
- Gavhane, Y.N.; Gurav, A.S.; Yadav, A.V. Chitosan and its applications: A review of literature. Int. J. Res. Pharm. Biomed. Sci. 2013, 4, 312–331. [Google Scholar]
- Johney, J.; Eagappan, K.; Ragunathan, R.R. Microbial extraction of chitin and chitosan from Pleurotus spp., its characterization and antimicrobial activity. Int. J. Curr. Pharm. Res. 2017, 9, 88–93. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Lai, C.; Fan, Y.; Ouyang, J.; Yong, Q. Fungal chitosan production using xylose-rich corn stover hydrolysate by Rhizopus oryzae. Biotechnol. Biotechnol. Equip. 2017, 31, 1160–1166. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Revision 3; AOAC International: Rockville, MD, USA, 2010. [Google Scholar]
- ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: London, UK, 2015. Available online: https://www.iso.org/standard/58004.html (accessed on 16 January 2025).
- Wang, W.; Bo, S.Q.; Li, S.Q.; Qin, W. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int. J. Biol. Macromol. 1991, 13, 281–285. [Google Scholar] [CrossRef] [PubMed]
- El-Kareem, M.; Rabbih, M.; Selim, E.; Elsherbiny, E.; El-Khateeb, A.Y. Application of GC/EIMS in combination with semi-empirical calculations for identification and investigation of some volatile components in basil essential oil. Int. J. Anal. Mass Spectrom. Chromatogr. 2016, 4, 14–25. [Google Scholar] [CrossRef]
- Datta, A.; Kamthan, A.; Kamthan, M.; Chakraborty, N.; Chakraborty, S. A simple protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites using GC-MS. Protoc. Exch. 2012. [Google Scholar] [CrossRef]
- Knorr, D. Functional properties of chitin and chitosan. J. Food Sci. 1982, 47, 593–595. [Google Scholar] [CrossRef]
- Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulanski, P.; Rosiak, J.M. Determination of degree of deacetylation of chitosan—Comparison of methods. Prog. Chem. Appl. Chitin Its Deriv. 2012, 17, 5–20. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett. 2018, 291, 77–85. [Google Scholar] [CrossRef]
- Fekry, M.I.; Ezzat, S.M.; Salama, M.M.; Alshehri, O.Y.; Al-Abd, A.M. Bioactive glycoalkaloids isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci. Rep. 2019, 9, 1746. [Google Scholar] [CrossRef]
- Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A.; Ajabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep. 2018, 8, 11674. [Google Scholar] [CrossRef] [PubMed]
- Alaufi, O.M.; Noorwali, A.; Zahran, F.; Al-Abd, A.M.; Al-Attas, S. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci. Rep. 2017, 7, 13131. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Al-Abd, A.M.; El-halawany, A.M.; Abdalla, H.M.; Ibrahim SR, M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 2017, 198, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Sowmya, S.; Kumar, P.S.; Deepthi, S.; Chennazhi, K.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014, 39, 1644–1667. [Google Scholar] [CrossRef]
- Park, J.K.; Chung, M.J.; Choi, H.N.; Park, Y.I. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. Mol. Sci. 2011, 12, 266–277. [Google Scholar] [CrossRef]
- Gunbeyaz, M.; Faraji, A.; Ozkul, A.; Purali, N.; Senel, S. Chitosan-based delivery systems for mucosal immunization against bovine herpesvirus 1 (BHV-1). Eur. J. Pharm. Sci. 2010, 41, 531–545. [Google Scholar] [CrossRef]
- Wimardhani, Y.S.; Suniarti, D.F.; Freisleben, H.J.; Wanadi, S.I.; Ikeda, M.A. Cytotoxic effects of chitosan against oral cancer cell lines is molecular-weight-dependent and cell-type specific. Int. J. Oral Res. 2012, 3, e1. [Google Scholar] [CrossRef]
- Wimardhani, Y.S.; Suniarti, D.F.; Freisleben, H.J.; Wanandi, S.I.; Siregar, N.C.; Ikeda, M.-A. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J. Oral Sci. 2014, 56, 119–126. [Google Scholar] [CrossRef]
- Oluwafemi, G.I.; Seidu, K.T.; Fagbemi, T.N. Chemical composition, functional properties and protein fractionation of edible oyster mushroom (Pleurotus ostreatus). Ann. Food Sci. Technol. 2016, 17, 218–224. [Google Scholar]
- Manu-Tawiah, W.; Martin, A.M. Chemical composition of Pleurotus ostreatus mycelial biomass. Food Microbiol. 1987, 4, 303–310. [Google Scholar] [CrossRef]
- Vamanu, E. Antioxidant properties and chemical compositions of various extracts of the edible commercial mushroom, Pleurotus ostreatus, in Romanian markets. Rev. Roum. Chim. 2013, 64, 49–54. [Google Scholar]
- Queiroz, M.F.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs 2015, 13, 3038–3050. [Google Scholar] [CrossRef]
- No, H.K.; Lee, K.S.; Meyers, S.P. Correlation between physicochemical characteristics and binding capacities of chitosan products. J. Food Sci. 2000, 65, 1002–1006. [Google Scholar] [CrossRef]
- Cho, Y.I.; No, H.K.; Meyers, S.P. Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric. Food Chem. 1998, 46, 3839–3843. [Google Scholar] [CrossRef]
- Goni, R.; García, P.; Foissac, S. The qPCR data statistical analysis. Integromics White Pap. 2009, 1, 1–9. [Google Scholar]
- Venkatesan, J.; Lee, J.-Y.; Kang, D.S.; Anil, S.; Kim, S.-K.; Shim, M.S.; Kim, D.G. Antimicrobial and anticancer activities of porous chitosan-alginate-biosynthesized silver nanoparticles. Int. J. Biol. Macromol. 2017, 98, 515–525. [Google Scholar] [CrossRef]
- Gibot, L.; Chabaud, S.; Bouhout, S.; Bolduc, S.; Auger, F.A.; Moulin, V.J. Anticancer properties of chitosan on human melanoma are cell line dependent. Int. J. Biol. Macromol. 2015, 72, 370–379. [Google Scholar] [CrossRef] [PubMed]
Day | Yield of Biomass (g/L Dry wt) | Chitin Yield (mg/L) | Chitosan Yield (mg/L) |
---|---|---|---|
3 | 1.23 | 18.5 | 0.084 |
5 | 3.84 | 56 | 0.342 |
8 | 7.56 | 182 | 0.653 |
12 | 11.83 | 298 | 173.8 |
14 | 10.0 | 214 | 83.12 |
Components | Percentage % |
---|---|
Moisture content (%) | 92 |
Fats | 0.3 |
Protein | 3.2 |
Ash content (%) | 0.8 |
Carbohydrates | 3.6 |
Parameter | Value |
---|---|
Intrinsic Viscosity (dL/g) | 765.0 |
Molecular weight | 1.6 × 105 Da |
Degree of deacetylation (DD%) | 80.0% |
Nitrogen content (N%) | 0.54% dry weight of biomass |
Mass-to-Charge Ratio (m/z) | Absolute Intensity | Relative Intensity |
---|---|---|
55.08 | 76,135.4 | 31.67 |
56.12 | 25,497.2 | 10.61 |
59.18 | 141,858.2 | 59.01 |
58.14 | 24,835.2 | 10.33 |
60.19 | 21,510 | 8.95 |
67.11 | 26,771.6 | 11.14 |
69.13 | 36,599.6 | 15.22 |
70.11 | 240,394.6 | 100 |
71.12 | 33,801.5 | 14.06 |
73.09 | 40,699.6 | 16.93 |
81.14 | 36,989.8 | 15.39 |
95.14 | 26,915 | 11.2 |
97.13 | 23,026.7 | 9.58 |
99.1 | 28,645.9 | 11.92 |
123.08 | 29,649 | 12.33 |
135.18 | 24,164.3 | 10.05 |
136.13 | 26,941.6 | 11.21 |
151.08 | 21,880.9 | 9.1 |
159.11 | 21,013.8 | 8.74 |
165.08 | 33,782.6 | 14.05 |
Treatments | Solubility Case | Solubility % |
---|---|---|
H2O2 | Insoluble | 0.00 |
CH3COOH (0.1%) | Swelling | 21.6 ± 1.5 |
CH3COOH (0.5%) | Soluble | 95.8 ± 0.72 |
CH3COOH (1%) | Soluble | 100 ± 0.00 |
NaOH (1%) | Insoluble | 0.00 |
Replicates | Initial Weight (g) | Chitosan’s Water-Binding (WB) Capacity | Chitosan’s Capacity to Fat Binding (FB) | ||||
---|---|---|---|---|---|---|---|
Weight of Water Bound | WBC (%) | Ave. WBC (%) | Weight of Fat Bound | FBC (%) | Ave. FBC (%) | ||
1 | 0.5 | 2.62 | 524 | 526.6 ± 8.3 | 1.78 | 365 | 363 ±4.3 |
2 | 0.5 | 2.68 | 536 | 1.83 | 366 | ||
3 | 0.5 | 2.60 | 520 | 1.79 | 358 |
Sample | Cq for Caspase-3 | ||
---|---|---|---|
Result 1 | Result 2 | Result 3 | |
Control | 25.66679 | 25.4567 | 25.73934 |
Chitosan | 31.37618 | 29.50236 | 31.10158 |
Sample | Cq for β-Actin | ||
---|---|---|---|
Reading 1 | Reading 2 | Reading 3 | |
Control | 15.56439 | 15.68983 | 15.74965 |
Chitosan | 20.39383 | 19.97067 | 19.55612 |
Chitosan | Raw Data | Blank Corrected Data | Viability% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Conc. | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | Mean | STD |
C | 2.2304 | 2.207 | 2.221 | 2.195 | 2.1716 | 2.1856 | 100 | 100 | 100 | 100 | 0 |
0.1 | 2.2223 | 2.2512 | 2.2649 | 2.1869 | 2.2158 | 2.2295 | 100.13 | 101.453 | 102.08 | 101.221 | 0.813004658 |
0.3 | 2.2223 | 2.1993 | 2.3033 | 2.1869 | 2.1639 | 2.2679 | 100.13 | 99.0766 | 103.838 | 101.015 | 2.042265236 |
1 | 2.2442 | 2.1807 | 2.2364 | 2.2088 | 2.1453 | 2.201 | 101.132 | 98.225 | 100.775 | 100.044 | 1.294630271 |
3 | 2.1884 | 2.155 | 2.1998 | 2.153 | 2.1196 | 2.1644 | 98.5776 | 97.0483 | 99.0995 | 98.2418 | 0.870413289 |
10 | 2.1022 | 2.188 | 2.1142 | 2.0668 | 2.1526 | 2.0788 | 94.6308 | 98.5593 | 95.1802 | 96.1234 | 1.736931189 |
Blank | 0.0358 | 0.035 | 0.0354 | Blank average | 0.0354 | Control average | 2.18407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhahrani, A. Physicochemical Characteristics of Chitosan Extracted from Pleurotus ostreatus and Its Anticancer Activity Against the MDA-MB-231 Breast Cancer Cell Line. Polymers 2025, 17, 1228. https://doi.org/10.3390/polym17091228
Aldhahrani A. Physicochemical Characteristics of Chitosan Extracted from Pleurotus ostreatus and Its Anticancer Activity Against the MDA-MB-231 Breast Cancer Cell Line. Polymers. 2025; 17(9):1228. https://doi.org/10.3390/polym17091228
Chicago/Turabian StyleAldhahrani, Adil. 2025. "Physicochemical Characteristics of Chitosan Extracted from Pleurotus ostreatus and Its Anticancer Activity Against the MDA-MB-231 Breast Cancer Cell Line" Polymers 17, no. 9: 1228. https://doi.org/10.3390/polym17091228
APA StyleAldhahrani, A. (2025). Physicochemical Characteristics of Chitosan Extracted from Pleurotus ostreatus and Its Anticancer Activity Against the MDA-MB-231 Breast Cancer Cell Line. Polymers, 17(9), 1228. https://doi.org/10.3390/polym17091228