High-Permittivity Silicone Composites with Different Polarization Titanates for Electric Field Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Synthesis of Fillers
2.3. Production of Composites
2.4. Characterization of Fillers
2.5. Study of Composites
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zemtsov, A.I.; Artyukhov, I.I. Power supply system for industrial packaged magnetrons group. In Proceedings of the 29th International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic, 16–18 April 2019. [Google Scholar]
- Jang, S.-R.; Ryoo, H.-J.; Ahn, S.-H.; Kim, J.; Rim, G.H. Development and Optimization of High-Voltage Power Supply System for Industrial Magnetron. Trans. Ind. Electron. 2012, 59, 1453–1461. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Sun, W.-F.; Zhang, J.; Liang, J.-Q.; Wang, L.; Zhang, K.-X. Direct Current Electrical Performances of Cable Accessory Insulation EPDM Modified by Grafting Polar-Group Compound. Polymers 2022, 14, 4625. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, F.; Karlsson, M.; Pallon, L.; Giacinti, M.; Olsson, R.T.; Venturi, D.; Gedde, U.W.; Hedenqvist, M.S. Influence of water update on the electrical DC-conductivity of insulating LDPE/MgO nanocomposites. Compos. Sci. Technol. 2017, 152, 11–19. [Google Scholar] [CrossRef]
- Mazzanti, M.; Marzinotto, M. Extruded Cables for High-Voltage Direct-Current Transmission: Advances in Research and Development; Jonh Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Beyer, G. The Global Cable Industry: Materials, Markets, Products; WILEY-VCH GmbH: Weinheim, Germany, 2021. [Google Scholar]
- Greshnyakov, G.; Dubitskiy, S.; Korovkin, N. Optimization of Capacitive and Resistive Field Grading Devices for Cable Joint and Termination. Int. J. Energy 2015, 9, 24–30. [Google Scholar]
- Strobl, R.; Fitzgerald, F.; Haverkamp, W.; Malin, G. Metal oxide matrix-cold applied elastomeric termination systems. In Conference Papers, Proceedings of the IEEE Incorporated Industry Applications Society, Forty-Eighth Annual Conference, 2001 Petroleum and Chemical Industry Technical Conference, Toronto, ON, Canada, 26 September 2001. [Google Scholar]
- Yang, X.; Zhao, X.; Hu, J.; He, J. Grading electric field in high voltage insulation using composite materials. IEEE Electr. Insul. Mag. 2018, 1, 15–25. [Google Scholar] [CrossRef]
- Lottes, A.C.; Somasiri, N.L.; Baran, J.R., Jr.; Huynh, P.V. 3M Innovative Properties Co. Method of making an electrical stress control device having a dielectric material with non-linear dielectric constant. U.S. Patent 9,390,833, 12 July 2016. [Google Scholar]
- Ahmed, M.; Zhong, L.; Li, F.; Xu, N.; Gao, J. Improving the DC Dielectric Properties of XLPE with Appropriate Content of Dicumyl Peroxide for HVDC Cables Insulation. Materials 2022, 15, 5857. [Google Scholar] [CrossRef]
- Kumar, A.; Patra, K.; Hossain, M. Silicone composites cured under a high electric field: An electromechanical experimental study. Polym. Compos. 2021, 42, 914–930. [Google Scholar] [CrossRef]
- Cho, E.; Chiu, L.L.; Lee, M.; Naila, D.; Sadanand, S.; Waldman, S.D.; Sussman, D. Characterization of mechanical and dielectric properties of silicone rubber. Polymers 2021, 13, 1831. [Google Scholar] [CrossRef]
- Ito, S.; Hirai, N.; Ohki, Y. Changes in mechanical and dielectric properties of silicone rubber induced by severe aging. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 722–730. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Li, H.; Poh, M.; Xia, F.; Cheng, Z.-Y.; Xu, H.; Huang, C. An all-organic composite actuator material with a high dielectric constant. Nature 2002, 419, 284–287. [Google Scholar] [CrossRef]
- Carpi, F.; Rossi, D.D. Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 835–843. [Google Scholar] [CrossRef]
- Gallone, G.; Carpi, F.; Rossi, D.D.; Levita, G.; Marchetti, A. Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate. Mater. Sci. Eng. C 2015, 27, 110–116. [Google Scholar] [CrossRef]
- Yu, L.; Frederikke, B.M.; Søren, H.; Anne, L.S. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks. RSC Adv. 2015, 5, 49739–49747. [Google Scholar] [CrossRef]
- Hsieh, M.Y.; Chen, W.S.; Hsu, C.H.; Wu, C.H. High-voltage insulation and dielectric properties of ceramic-glass composites. J. Asian Ceram. 2022, 10, 739–743. [Google Scholar] [CrossRef]
- Vu-Cong, T.; Jean-Mistral, C.; Sylvestre, A. Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers. Smart Mater. Struct. 2012, 21, 105036. [Google Scholar] [CrossRef]
- Zhang, T.; Han, B.J.; Yu, J.; Wang, X.D.; Huang, P. Enhancement of dielectric constant of polyimide by doping with modified silicon dioxide@ titanium carbide nanoparticles. RSC Adv. 2018, 8, 16696–16702. [Google Scholar] [CrossRef]
- Tsuji, K.; Chen, W.T.; Guo, H.; Lee, W.H.; Guillemet-Fritsch, S.; Randall, C.A. Contrasting conduction mechanisms of two internal barrier layer capacitors:(Mn, Nb)-doped SrTiO3 and CaCu3Ti4O12. J. Appl. Phys. 2017, 121, 064107. [Google Scholar] [CrossRef]
- Ferrarelli, M.C.; Sinclair, D.C.; West, A.R.; Dabkowska, H.A.; Dabkowski, A.; Luke, G.M. Comment on the origin (s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem. 2009, 19, 5916–5919. [Google Scholar] [CrossRef]
- Tsyganov, A.; Artyukhov, D.; Vikulova, M.; Morozova, N.; Zotov, I.; Brudnik, S.; Asmolova, A.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Synthesis and Dielectric Relaxation Studies of KxFeyTi8-yO16 (x = 1.4–1.8 and y = 1.4–1.6) Ceramics with Hollandite Structure. Ceramics 2023, 6, 619–629. [Google Scholar] [CrossRef]
- Everhardt, A.S.; Matzen, S.; Domingo, N.; Catalan, G.; Noheda, B. Ferroelectric domain structures in low-strain BaTiO3. Adv. Electron. Mater. 2016, 2, 1500214. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Zotov, I.; Burmistrov, I.; Gorokhovsky, A.; Gorshkov, N. Synergistic effect of CaCu3Ti4O12 ceramic and Ti3C2Tx MXene nanoflakes on the dielectric properties of poly (vinylidene fluoride) composites. Mater. Chem. Phys. 2024, 313, 128714. [Google Scholar]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Bainyashev, A.; Goffman, V.; Gorokhovsky, A.; Boychenko, E.; Burmistrov, I.; Gorshkov, N. Permittivity and Dielectric Loss Balance of PVDF/K1.6Fe1.6Ti6.4O16/MWCNT Three-Phase Composites. Polymers 2022, 14, 4609. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Bainyashev, A.; Goffman, V.; Gorokhovsky, A.; Gorshkov, N. Carbon modification of K1.6Fe1.6Ti6.4O16 nanoparticles to optimize the dielectric properties of PTFE-based composites. Polymers 2022, 14, 4010. [Google Scholar] [CrossRef]
- Gorshkov, N.; Goffman, V.; Vikulova, M.; Burmistrov, I.; Sleptsov, V.; Gorokhovsky, A. Polytetrafluorethylene-based high-k composites with low dielectric loss filled with priderite (K1.46Ti7.2Fe0.8O16). J. Appl. Polym. Sci. 2020, 137, 48762. [Google Scholar]
- Vikulova, M.; Tsyganov, A.; Bainyashev, A.; Artyukhov, D.; Gorokhovsky, A.; Muratov, D.; Gorshkov, N. Dielectric properties of PMMA/KCTO(H) composites for electronics components. J. Appl. Polym. Sci. 2021, 138, 51168. [Google Scholar] [CrossRef]
- Mazurek, P.; Hvilsted, S.; Skov, A.L. Green Silicone Elastomer Obtained from a Counterintuitively Stable Mixture of Glycerol and PDMS. Polymer 2016, 87, 1–7. [Google Scholar]
- Mazurek, P.S.; Yu, L.; Gerhard, R.; Wirges, W.; Skov, A.L. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers. J. Appl. Polym. Sci. 2016, 133, 44153. [Google Scholar]
- Mathias, K.A.; Hiremath, S.; Kulkarni, S.M. Experimental studies on mechanical and dielectric behavior of Glycerol filled Silicone rubber composites. Eng. Res. Express 2021, 3, 035010. [Google Scholar]
- Kovalenko, O.A.; Shyrokov, O.V.; Kolesnichenko, V.G.; Ragulya, A.V. The Control of the Structure and Size of the Barium Titanate Nanoparticles Prepared by the Oxalate Method. Nanosyst. Nanomater. Nanotechnol. 2023, 21, 413–426. [Google Scholar]
- Peng, Q.C.; Hao, T.Y.; Shen, J.; Liu, J.; Zhong, C. Synthesis of barium titanate with narrow particle size distribution by the oxalate thermal decomposition method. Tungsten 2024, 1–12. [Google Scholar] [CrossRef]
- Bele, A.; Cazacu, M.; Stiubianu, G.; Vlad, S. Silicone–barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology. RSC Adv. 2014, 4, 58522–58529. [Google Scholar]
- Bele, A.; Cazacu, M.; Stiubianu, G.; Vlad, S.; Ignat, M. Polydimethylsiloxane–barium titanate composites: Preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior. Compos. Part B Eng. 2015, 68, 237–245. [Google Scholar]
- Yan, F.; Wang, L.; Wang, H.; Wang, S.; Gao, K. High temperature characteristics of composite materials composed of silicone gel and barium titanate in high voltage power modules. IEEE Trans. Ind. Appl. 2023, 59, 3648–3659. [Google Scholar] [CrossRef]
- Bele, A.; Stiubianu, G.; Varganici, C.D.; Ignat, M.; Cazacu, M. Silicone dielectric elastomers based on radical crosslinked high molecular weight polydimethylsiloxane co-filled with silica and barium titanate. J. Mater. Sci. 2015, 50, 6822–6832. [Google Scholar]
- Bele, A.; Stiubianu, G.; Vlad, S.; Tugui, C.; Varganici, C.D.; Matricala, L.; Ionita, D.; Timpu, D.; Cazacu, M. Aging behavior of the silicone dielectric elastomers in a simulated marine environment. RSC Adv. 2016, 6, 8941–8955. [Google Scholar] [CrossRef]
- Shankar, M.; Hiremath, S.; Kulkarni, S.M. Influence of conductive and dielectric fillers on the relaxation of solid silicone rubber composites. Mater. Res. Express. 2019, 6, 125308. [Google Scholar]
- Li, G.; Chen, X.; Guo, H.; Liu, L.; Li, S.; Zhu, Y.; Wei, Y. Insulation properties of polypropylene and silicone rubber modified by barium strontium titanate and interfacial charge accumulation properties. Compos. Sci. Technol. 2025, 261, 111037. [Google Scholar]
- Zeng, Y.; Tang, L.; Li, G. Preparation and characterization of CNTs/CaCu3Ti4O12/silicone rubber composites with improved dielectric and mechanical properties. J. Appl. Polym. Sci. 2023, 140, e54279. [Google Scholar]
- Zeng, Y.; Rao, S.; Xiong, C.; Du, G.; Fan, Z.; Chen, N. Enhanced dielectric and mechanical properties of CaCu3Ti4O12/Ti3C2Tx MXene/silicone rubber ternary composites. Ceram. Int. 2022, 48, 6116–6123. [Google Scholar]
Parameter | Value |
---|---|
Viscosity at 20 degrees, SPz | (8–20)·103 |
Viability, h, not less than | 1 |
Relative elongation at break,%, not less than | 400 |
Tensile strength, MPa, not less than | 3.0 |
Shore Hardness (Scale A) | 35 |
Silicone Composite | Filler | Filler Content (wt.%) | Polarization Type of Filler | Dielectric Constant (at Range 100 Hz–100 kHz) | Loss Tangent (at Range 100 Hz–100 kHz) |
---|---|---|---|---|---|
polydimethylsiloxane-α,ω-diol (Mw = 642,000 g mol−1)/30% SiO2/BTO [39] | BTO | 15 | Domain polarization | 4.15–4.20 | 0.0150–0.0170 |
polydimethylsiloxane-α,ω-diol (Mw = 650,000 g mol−1)/15% PLURONIC L-31/BTO [40] | BTO | 15 | 5.10–4.00 | 0.0130–0.1300 | |
Commercially available silicone rubber NE 5140/BTO [41] | BTO | 11 | 4.10–1.50 | 0.1400–0.4700 | |
Silicone rubber/Ba0.6Sr0.4TiO3 [42] | Ba0.6Sr0.4TiO3 | 20 | 4.05–4.00 | 0.0300–0.0450 | |
Commercially available silicone rubber Ecoflex 00–30 [12] | BTO | 20 | 4.60–4.38 | 0.0180–0.0070 | |
Commercially available silicone rubber M750/BTO [this work] | BTO | 25 | 4.95–4.47 | 0.0340–0.0080 | |
Commercially available silicone rubber M750/glycerin/BTO [this work] | BTO | 25 | 9.21–7.75 | 0.0310–0.0650 | |
Commercially methylvinyl silicone rubber type 110–2/2% CNTs/CaCu3Ti4O12/10% Benzoyl peroxide [43] | CCTO | 10 | IBLC | 5.7 | 0.0012 |
Commercial methylvinyl silicone rubber type 110–2/CaCu3Ti4O12/1.2% Ti3C2Tx MXene [44] | CCTO | 12 | 7 | 0.0016 | |
Commercially available silicone rubber M750/CCTO [this work] | CCTO | 25 | 5.14–5.04 | 0.0340–0.0075 | |
Commercially available silicone rubber M750/glycerin/CCTO [this work] | CCTO | 25 | 16.18–8.84 | 0.0310–0.0490 | |
Commercially available silicone rubber M750/KFTO [this work] | KFTO | 25 | Ion polarization | 4.94–4.77 | 0.0380–0.0110 |
Commercially available silicone rubber M750/glycerin/KFTO [this work] | KFTO | 25 | 54.41–8.23 | 10.3–0.1200 |
Silicone Composite | Filler | Shore Hardness |
---|---|---|
Commercially available silicone rubber M750/BTO | BTO | 38 |
Commercially available silicone rubber M750/glycerin/BTO | BTO | 11 |
Commercially available silicone rubber M750/CCTO | CCTO | 42 |
Commercially available silicone rubber M750/glycerin/CCTO | CCTO | 16 |
Commercially available silicone rubber M750/KFTO | KFTO | 47 |
Commercially available silicone rubber M750/glycerin/KFTO | KFTO | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzivilov, E.; Zotov, I.; Vikulova, M.; Tsyganov, A.; Artyukhov, I.; Artyukhov, D.; Gorokhovsky, A.; Yudin, A.; Gorshkov, N. High-Permittivity Silicone Composites with Different Polarization Titanates for Electric Field Modification. Polymers 2025, 17, 986. https://doi.org/10.3390/polym17070986
Radzivilov E, Zotov I, Vikulova M, Tsyganov A, Artyukhov I, Artyukhov D, Gorokhovsky A, Yudin A, Gorshkov N. High-Permittivity Silicone Composites with Different Polarization Titanates for Electric Field Modification. Polymers. 2025; 17(7):986. https://doi.org/10.3390/polym17070986
Chicago/Turabian StyleRadzivilov, Evgeniy, Ilya Zotov, Maria Vikulova, Alexey Tsyganov, Ivan Artyukhov, Denis Artyukhov, Alexander Gorokhovsky, Artem Yudin, and Nikolay Gorshkov. 2025. "High-Permittivity Silicone Composites with Different Polarization Titanates for Electric Field Modification" Polymers 17, no. 7: 986. https://doi.org/10.3390/polym17070986
APA StyleRadzivilov, E., Zotov, I., Vikulova, M., Tsyganov, A., Artyukhov, I., Artyukhov, D., Gorokhovsky, A., Yudin, A., & Gorshkov, N. (2025). High-Permittivity Silicone Composites with Different Polarization Titanates for Electric Field Modification. Polymers, 17(7), 986. https://doi.org/10.3390/polym17070986