Cl−, Na+ and Mg2+ Adsorption and Electronic Properties on 2-Octyl Acrylate and Isobornyl Acrylate Monomers: A Comprehensive DFT Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
3.1. Adsorption Energy and Quantitative Analysis
3.1.1. Adsorption Energy Trends
3.1.2. Structural Insights from Adsorption
3.1.3. Quantum Descriptors
3.2. Combining 2-OA and IBOA in Dimers
3.3. Electronic Properties
3.4. Electrostatic Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, Y.; Sunnerscales, J.; Graham-Jones, J.; Meng, M.; Pemberton, R. Monomer selection for ın situ polymerization ınfusion manufacture of natural-fiber reinforced thermoplastic-matrix marine composites. Polymers 2020, 12, 2928. [Google Scholar] [CrossRef] [PubMed]
- Mutkumar, T.; Aravinthan, A.; Lakshmi, K.; Venkatesan, R. Fouling and stability of polymers and composites in marine enviroment. Int. Biodeterior. Biodegrad. 2011, 65, 276–284. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cumnis, E. Ranking of potential hazards from microplastics polymers in the marine enviroments. J. Hazard. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhou, Y.; Ni, C.; Yu, L.; Yuan, Z.; Li, C.; Yan, X. Research on the Marine Antifouling and Mechanism of Acrylate Copolymers and Marine Coatings Based on a Synergetic Effect. J. Ocean Univ. China 2023, 22, 717–727. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Tang, L.; Yang, H.; Lu, Z.; Wang, J.; Liu, L.; Takahashi, K. Synthesis of zinc-based acrylate copolymers and their marine antifoulding application. RSC. Adv. 2017, 7, 40020. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, M.; Luo, C.; Chen, X.; Kong, J.; Zhou, T. A novel composite paint (TiO2/fluorinated acrylic composite) for antifouling application in marine enviroments. J. Environ. Chem. Eng. 2016, 4, 2545–2555. [Google Scholar] [CrossRef]
- Ajekwene, K.K. Properties and applications of acrylates. In Acylate Polymers for Advanced Applications; Serrano-Aroca, A., Deb, S., Eds.; IntechOpen: London, UK, 2020; Chapter 3. [Google Scholar]
- Chalifoux, P.R. Acrylic and other resins: Provisional restorations. In Esthetic Dentistry; Aschheim, K.W., Ed.; Mosby: St. Louis, MO, USA, 2015; Volume 10, pp. 197–230. [Google Scholar]
- Riondel, A.; Graire, C.; Esch, M.; Linemann, R. Industrial Process for Manufacture of 2-Octyl Acrylate by Transesterification with High Purity and Output. WO 2013110876, 1 August 2013. p. A1. [Google Scholar]
- Aguirre, M.; Ballard, N.; Gonzalez, E.; Hamzehlou, S.; Sardon, H.; Calderon, M.; Paulis, M.; Tomovska, R.; Dupin, D.; Bean, R.H.; et al. Polymer Coolloids: Current Challenges, Emerging Applications; and New Developments. Macromolecules 2023, 56, 2579–2607. [Google Scholar] [CrossRef]
- Xu, X.; Chen, I.; Guo, J.; Cao, X.; Wang, S. Synthesis and characteristics of tung oil-based acrylated-alkyd resin modified by isorborn acyrlated. Polym. Sci. C 2015, 57, 120–127. [Google Scholar]
- Dong, F.; Qian, Y.; Xu, X.; Sihaghaleh, H.; Guo, L.; Liu, H. Preparation and characterization of UV-curable waterborne polyurethane using isobornyl acrylate modified via copolymerization. Polym. Degrad. Stab. 2021, 184, 109474. [Google Scholar] [CrossRef]
- Peng, C.W.; Chang, K.C.; Weng, C.J.; Lai, M.C.; Hsu, C.H.; Hsu, S.C.; Li, S.-Y.; Wei, Y.; Yeh, J.-M. UV-curable nanocasting technique to prepare bio-mimetic super-hydrophobic non-fluorinated polymeric surfaces for advanced anticorrosive coatings. Polym. Chem. 2013, 4, 926–932. [Google Scholar] [CrossRef]
- Lo, C.W.; Zhu, D.; Jiang, H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 2011, 7, 5604–5609. [Google Scholar] [CrossRef]
- Shin, M.; Lee, Y.; Rahman, M.; Kim, H. Synthesis and properties of waterborne fluorinated polyurethane-acrylate using a solvent-/emulsifier-free method. Polymer 2013, 54, 4873–4882. [Google Scholar] [CrossRef]
- Khandelwal, D.; Hooda, S.; Brar, A.S.; Shankar, R. 1D and 2D NMR studies of isobornyl acrylate—Methyl methacrylate copolymers. J. Mol. Struct. 2011, 1004, 121–130. [Google Scholar] [CrossRef]
- Kamann, S.; Oppel, E. Hydrocollod blister plaster decreases allergic contact dermatititis caused by Freestyle Libre and isorbornyl acrylate. Contact Dermat. 2019, 81, 380–381. [Google Scholar] [CrossRef]
- Ng, K.L.; Nixon, R.L.; Grillis, C.; Tam, M.M. Solution using stomahasive wafers for allergic contact dermatitis caused by isobornyl acrylate in glucose monitoring sensors. Aust. J. Dermatol. 2022, 63, 56–59. [Google Scholar] [CrossRef]
- Brogden, E.M.; Bon, S.A.F. Water-based polymer colloids with a branched chain architcture as low-gel pressure-sensitive adhesives. Polym. Chem. 2024, 15, 2489. [Google Scholar] [CrossRef]
- Stouten, J.; Cao, H.; Pich, A.; Bernaerts, K.V. Renewable and functional latexes synthesized by polymerization-induced self-assmeblyy for UV-curable films. ACS Appl. Mater. Interfaces 2023, 15, 52939–52952. [Google Scholar]
- Badia, A.; Agirre, A.; Barandiaran, M.J.; Leiza, J.R. Easy removable and UV tunable biobased waterborne pressure sensitive adhesives. Int. J. Adhes. Adhes. 2021, 108, 102860. [Google Scholar] [CrossRef]
- Montemore, M.M.; Medlin, J.W. A Unified Picture of Adsorption on Transition Metals Through Diffrent Atoms. J. Am. Chem. Soc. 2014, 136, 9272–9275. [Google Scholar] [CrossRef]
- Yaminsky, V.V.; Ninham, B.W.; Christenson, H.K.; Pashlev, R.M. Adsorption Forces between Hydrophobic Monolayers. Langmuir 1996, 12, 1936–1943. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Ren, B.; Min, F.; Liu, L.; Chen, J.; Liu, C.; Lv, K. Adsorption of different PAM structural units on kaolinite (0 0 1) surface: Density functional theory study. Appl. Surf. Sci. 2020, 504, 144324. [Google Scholar] [CrossRef]
- Lai, W.; Zhang, K.; Shao, P.; Yang, L.; Ding, L.; Pavlostathis, S.G.; Shi, H.; Zou, L.; Liang, D.; Luo, X. Optimization of adsorption configuration by DFT calculation for design of adsorbent: A case study of palladium ion-imprinted polymers. J. Hazard. Mater. 2019, 379, 120791. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W.; Yang, Z.; Zhuo, Q.; Zhang, H.; Geng, P. DFT study of the adsorption of 2,3-epoxypropyltrimethylammonium chloride on montmorillonite surfaces. J. Mol. Liq. 2021, 334, 116145. [Google Scholar] [CrossRef]
- Zhang, L.; Min, F.; Chen, J.; Liu, C.; Wang, T. New insights into the interaction between monomers from acrylamide-based polymeric flocculants and montmorillonite: A DFT study. J. Mol. Liq. 2022, 365, 120171. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; Garcia, A.; Junquera, J.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Condens. Matter Phys. 2002, 14, 2745–2779. [Google Scholar] [CrossRef]
- Ordejon, P.; Artacho, E.; Soler, J.M. Self-consistent order-N density functional calculations for very large systems. Phys. Rev. B 1996, 53, 10441–10444. [Google Scholar] [CrossRef]
- Junquera, J.; Paz, O.; Sanchez-Portal, D.; Artacho, E. Numerical atomic orbitals for linear-scaling calculations. Phy. Rev. B 2001, 64, 235111. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1994, 77, 3865–3868, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Hestenes, M.R.; Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Natl. Inst. Stand. Technol. 1952, 49, 2379. [Google Scholar] [CrossRef]
- Pack, J.D.; Monkhorst, H.J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Samadizadeh, M.; Rategar, S.F.; Petghan, A.A. F−, Cl− and Na+ adsorption on AIN nanotubes: A DFT study. Phys. E 2015, 69, 75–80. [Google Scholar] [CrossRef]
- Koopmans, T. Ordering of Wave Functions and Eigenenergies to the Individual Electrons of an Atom. Physica 1933, 1, 104–113. [Google Scholar] [CrossRef]
- Philips, J.C. Generalized Koopmans’ Theorem. Phys. Rev. 1961, 123, 420–424. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Majidi, R.; Ghanbari, M. Density Functional Theory and Voltammetric Study of Niclosamide Adsorption Behaviour on Carbon Nnaotubes. J. Electron. Mater. 2021, 50, 1260–1266. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Majidi, R.; Sohouli, E. Experimental and theoretical evaluation of clonazepam adsorption onto carbon nantotubes. Chem. Phys. 2022, 558, 111505. [Google Scholar] [CrossRef]
- Available online: http://www.arguslab.com/arguslab.com/ArgusLab.html (accessed on 16 December 2024).
- Ridley, J.; Zerner, M. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines. Theoret. Chim. Acta 1973, 32, 111–134. [Google Scholar] [CrossRef]
- Zerner, M.C.; Loew, G.H.; Kirschner, R.F.; Mueller-Westerhoff, U.T. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy of Transition-Metal Complexes. Ferrocene. J. Am. Chem. Soc. 1980, 102, 589–599. [Google Scholar] [CrossRef]
- Zerner, M.C. Semiempirical Molecular Orbital Methods. In Reviews in Computational Chemistry II; Lipkowitz, K.B., Boyd, D.B., Eds.; VCH Publishers Inc.: Hoboken, NJ, USA, 1991; Chapter 8; pp. 313–366. [Google Scholar]
- Setianto, S.; Men, L.K.; Panatarani, C.; Joni, I.M. Visualization the electrostatic potential energy map of graphene quantum dots. AIP Conf. Proc. 2020, 2219, 060001. [Google Scholar]
- Bartyzel, A.; Kaczor, A.A.; Mahmoudi, G.; Masoudiasl, A.; Wrobel, T.M.; Pitucha, M.; Matosiuk, D. Experimental and Computational Structural Studies of 2,3,5-Trisubstitted and 1,2,3,5-Tetrasubstituted Indoles as Non-Competitive Antagonists of GluK1/GluK2 Receptors. Molecules 2022, 27, 2479. [Google Scholar] [CrossRef] [PubMed]
- Priscilla, J.; Dhas, D.A.; Joe, I.H.; Balachandran, S. Spectroscopic (FT-IR, FT-Raman) investigation, topological (QTAIM, RDG, ELF) analysis, drug-likeness and anti-inflammatory activity study on 2-methylaminobenzoic acid alkaloid. J. Mol. Struct. 2023, 1273, 13461. [Google Scholar] [CrossRef]
- Baweja, S.; Lochab, A.; Baxi, S.; Saxena, R. Computational investigation of thallium interactions with functionalized multi-walled carbon nanotubes for electrochemical sensing applications. Pure Appl. Chem. 2024, 96, 421–428. [Google Scholar] [CrossRef]
2-OA | I | A | |||
---|---|---|---|---|---|
Cl− | 0.92 | −0.28 | −0.32 | 0.60 | 0.09 |
Na+ | 7.26 | 6.13 | −6.70 | 0.57 | 39.40 |
Mg2+ | 12.10 | 9.32 | −10.70 | 1.40 | 40.90 |
IBOA | I | A | |||
---|---|---|---|---|---|
Cl− | 1.05 | −0.2 | −0.43 | 0.63 | 0.15 |
Na+ | 8.65 | 4.85 | −6.75 | 1.9 | 12.00 |
Mg2+ | 11.98 | 9.05 | −10.52 | 1.47 | 37.65 |
Dimer | I | A | |||
---|---|---|---|---|---|
Cl− | 1.61 | −1.25 | −0.18 | 1.43 | 0.01 |
Na+ | 8.30 | 3.80 | −6.05 | 2.25 | 8.13 |
Mg2+ | 9.76 | 7.23 | −8.50 | 1.27 | 28.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolen, E.; Dolado, J.S.; Ayuela, A. Cl−, Na+ and Mg2+ Adsorption and Electronic Properties on 2-Octyl Acrylate and Isobornyl Acrylate Monomers: A Comprehensive DFT Study. Polymers 2025, 17, 799. https://doi.org/10.3390/polym17060799
Bolen E, Dolado JS, Ayuela A. Cl−, Na+ and Mg2+ Adsorption and Electronic Properties on 2-Octyl Acrylate and Isobornyl Acrylate Monomers: A Comprehensive DFT Study. Polymers. 2025; 17(6):799. https://doi.org/10.3390/polym17060799
Chicago/Turabian StyleBolen, Emre, Jorge S. Dolado, and Andrés Ayuela. 2025. "Cl−, Na+ and Mg2+ Adsorption and Electronic Properties on 2-Octyl Acrylate and Isobornyl Acrylate Monomers: A Comprehensive DFT Study" Polymers 17, no. 6: 799. https://doi.org/10.3390/polym17060799
APA StyleBolen, E., Dolado, J. S., & Ayuela, A. (2025). Cl−, Na+ and Mg2+ Adsorption and Electronic Properties on 2-Octyl Acrylate and Isobornyl Acrylate Monomers: A Comprehensive DFT Study. Polymers, 17(6), 799. https://doi.org/10.3390/polym17060799