Homogeneous Polymerization of Kraft Lignin Using an Alkaliphilic Multi-Copper Oxidase (Bilirubin Oxidase) in a Borate Buffer
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. BOD-Lignin Reactions
2.2.2. Characterization of Lignin
- NMR spectroscopy
- Size-exclusion chromatography
- Thermogravimetric Analysis (TGA)
- Dynamic Light Scattering (DLS)
3. Results and Discussion
3.1. Control Experiments: Boron Effect on Lignin Structure
3.1.1. Control Solubilization Kinetics
3.1.2. Fractions from the Control Solubilization Analysis
3.2. BOD-Induced Kraft Lignin Polymerization Under Alkaline Aqueous Conditions
3.2.1. BOD Treatment Kinetics
3.2.2. Fractions from the BOD Treatment Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
DLS | Dynamic light scattering |
DMSO | Dimethyl sulfoxide |
FTIR | Fourier Transform InfraRed spectroscopy |
HSQC | Heteronuclear Single Quantum Coherence |
HSQC NMR | Nuclear Magnetic Resonance |
SEC | Size-Exclusion Chromatography |
TGA | Thermogravimetric analysis |
References
- Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F.; Kim, H.; Schatz, P.F.; Marita, J.M.; Hatfield, R.D.; Ralph, S.A.; Christensen, J.H.; et al. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 2004, 3, 29–60. [Google Scholar] [CrossRef]
- Watkins, D.; Nuruddin, M.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef]
- Van Den Bosch, S.; Koelewijn, S.-F.; Renders, T.; Van Den Bossche, G.; Vangeel, T.; Schutyser, W.; Sels, B.F. Catalytic Strategies Towards Lignin-Derived Chemicals. Top. Curr. Chem. 2018, 376, 36. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wan, C. Biological valorization strategies for converting lignin into fuels and chemicals. Renew. Sustain. Energy Rev. 2017, 73, 610–621. [Google Scholar] [CrossRef]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, J.D.; Meyer, A.S. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 2015, 33, 13–24. [Google Scholar] [CrossRef]
- Mattinen, M.-L.; Tapani, S.; Gosselink, R.; Argyropoulos, D.; Evtuguin, D.; Suurnäkki, A.; de Jong, E.; Tamminen, T. Polymerization of different lignins by laccase. Bioresources 2008, 32, 549–555. [Google Scholar] [CrossRef]
- Agustin, M.B.; de Carvalho, D.M.; Lahtinen, M.H.; Hilden, K.; Lundell, T.; Mikkonen, K.S. Laccase as a Tool in Building Advanced Lignin-Based Materials. ChemSusChem 2021, 14, 4615–4635. [Google Scholar] [CrossRef]
- Lu, Z.; Tienaho, J.; Kilpeläinen, P.; Wang, L.; Zhang, H.; Hu, L.; Liu, R.; Brännström, H.; Halmemies, E.; Wang, X.; et al. Laccase-Catalyzed Copolymerization of Tannin and Technical Lignin: Polymerization Kinetics and Enhanced Properties of Polyphenols. ACS Sustain. Chem. Eng. 2024, 12, 8765–8779. [Google Scholar] [CrossRef]
- Van De Pas, D.; Hickson, A.; Donaldson, L.; Lloyd-Jones, G.; Tamminen, T.; Fernyhough, A.; Mattinen, M.-L. Characterization of fractionated lignins polymerized by fungal laccases. BioRes 2011, 6, 1105–1121. [Google Scholar] [CrossRef]
- Gouveia, S.; Fernández-Costas, C.; Sanromán, M.A.; Moldes, D. Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Bioresour. Technol. 2012, 121, 131–138. [Google Scholar] [CrossRef]
- Itoh, T.; Takagi, Y. Laccase-Catalyzed Reactions in Ionic Liquids for Green Sustainable Chemistry. ACS Sustain. Chem. Eng. 2021, 9, 1443–1458. [Google Scholar] [CrossRef]
- Da Silva, V.G. Laccases and ionic liquids as an alternative method for lignin depolymerization: A review. Bioresour. Technol. Rep. 2021, 16, 100824. [Google Scholar] [CrossRef]
- Stevens, J.C.; Das, L.; Mobley, J.K.; Asare, S.O.; Lynn, B.C.; Rodgers, D.W.; Shi, J. Understanding Laccase–Ionic Liquid Interactions toward Biocatalytic Lignin Conversion in Aqueous Ionic Liquids. ACS Sustain. Chem. Eng. 2019, 7, 15928–15938. [Google Scholar] [CrossRef]
- Delugeau, L.; Grelier, S.; Peruch, F. Enzymatic Treatment of Lignin in Alkaline Homogeneous Systems: A Review on Alkaliphilic Laccases. ChemSusChem 2025, e202402377. [Google Scholar] [CrossRef]
- Mano, N.; Edembe, L. Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosens. Bioelectron. 2013, 50, 478–485. [Google Scholar] [CrossRef]
- Mano, N. Features and applications of bilirubin oxidases. Appl. Microbiol. Biotechnol. 2012, 96, 301–307. [Google Scholar] [CrossRef]
- Durand, F.; Kjaergaard, C.H.; Suraniti, E.; Gounel, S.; Hadt, R.G.; Solomon, E.I.; Mano, N. Bilirubin oxidase from Bacillus pumilus: A promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens. Bioelectron. 2012, 35, 140–146. [Google Scholar] [CrossRef]
- Durand, F.; Gounel, S.; Kjaergaard, C.H.; Solomon, E.I.; Mano, N. Bilirubin oxidase from Magnaporthe oryzae: An attractive new enzyme for biotechnological applications. Appl. Microbiol. Biotechnol. 2012, 96, 1489–1498. [Google Scholar] [CrossRef]
- Gounel, S.; Rouhana, J.; Stines-Chaumeil, C.; Cadet, M.; Mano, N. Increasing the catalytic activity of Bilirubin oxidase from Bacillus pumilus: Importance of host strain and chaperones proteins. J. Biotechnol. 2016, 230, 19–25. [Google Scholar] [CrossRef]
- Ragnar, M.; Lindgren, C.T.; Nilvebrant, N.-O. pKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000, 20, 277–305. [Google Scholar] [CrossRef]
- Macho, J.M.; Blue, R.M.; Lee, H.-W.; MacMillan, J.B. Boron NMR as a Method to Screen Natural Product Libraries for B-Containing Compounds. Org. Lett. 2022, 24, 3161–3166. [Google Scholar] [CrossRef] [PubMed]
- Springsteen, G.; Wang, B. A detailed examination of boronic acid–diol complexation. Tetrahedron 2002, 58, 5291–5300. [Google Scholar] [CrossRef]
- Korich, A.L.; Clarke, K.M.; Wallace, D.; Iovine, P.M. Chemical Modification of a Lignin Model Polymer via Arylboronate Ester Formation under Mild Reaction Conditions. Macromolecules 2009, 42, 5906–5908. [Google Scholar] [CrossRef]
- Korich, A.L.; Fleming, A.B.; Walker, A.R.; Wang, J.; Tang, C.; Iovine, P.M. Chemical modification of organosolv lignin using boronic acid-containing reagents. Polymer 2012, 53, 87–93. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, H.; Liu, Z.; Chen, P.; Chen, Y.; Wang, X.; Chen, H.; Wang, S. Pyrolysis of boron-crosslinked lignin: Influence on lignin softening and product properties. Bioresour. Technol. 2022, 355, 127218. [Google Scholar] [CrossRef]
- Moya, R.; Saastamoinen, P.; Hernández, M.; Suurnäkki, A.; Arias, E.; Mattinen, M.-L. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour. Technol. 2011, 102, 10006–10012. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, H. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Bioresour. Technol. 2008, 99, 5480–5484. [Google Scholar] [CrossRef]
- Wang, L.; Tan, L.; Hu, L.; Wang, X.; Koppolu, R.; Tirri, T.; van Bochove, B.; Ihalainen, P.; Sobhanadhas, L.S.S.; Seppälä, J.V.; et al. On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose Surface via One-Pot Water-Phase Synthesis. ACS Sustain. Chem. Eng. 2021, 9, 8770–8782. [Google Scholar] [CrossRef]
- Morales, G.M.; Ali, S.S.; Si, H.; Zhang, W.; Zhang, R.; Hosseini, K.; Sun, J.; Zhu, D. Alkaline Bacterial Degradation of Lignin Through Engineered Strain E. coli BL21(Lacc): Exploring the Differences in Chemical Structure, Morphology, and Degradation Products. Front. Bioeng. Biotechnol. 2020, 8, 671. [Google Scholar] [CrossRef]
- Mayr, S.A.; Subagia, R.; Weiss, R.; Schwaiger, N.; Weber, H.K.; Leitner, J.; Ribitsch, D.; Nyanhongo, G.S.; Guebitz, G.M. Oxidation of Various Kraft Lignins with a Bacterial Laccase Enzyme. Int. J. Mol. Sci. 2021, 22, 13161. [Google Scholar] [CrossRef]
- Prasetyo, E.N.; Kudanga, T.; Østergaard, L.; Rencoret, J.; Gutiérrez, A.; Del Río, J.C.; Santos, J.I.; Nieto, L.; Jiménez-Barbero, J.; Martínez, A.T. Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresour. Technol. 2010, 101, 5054–5062. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, S.; Otero, L.A.; Fernández-Costas, C.; Filgueira, D.; Sanromán, Á.; Moldes, D. Green Binder Based on Enzymatically Polymerized Eucalypt Kraft Lignin for Fiberboard Manufacturing: A Preliminary Study. Polymers 2018, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Dababi, I.; Gimello, O.; Elaloui, E.; Quignard, F.; Brosse, N. Organosolv Lignin-Based Wood Adhesive. Influence of the Lignin Extraction Conditions on the Adhesive Performance. Polymers 2016, 8, 340. [Google Scholar] [CrossRef]
- Mao, J.; Holtman, K.M.; Scott, J.T.; Kadla, J.F.; Schmidt-Rohr, K. Differences between lignin in unprocessed wood, milled wood, mutant wood, and extracted lignin detected by 13C solid-state NMR. J. Agric. Food Chem. 2006, 54, 9677–9686. [Google Scholar] [CrossRef]
- Fu, L.; McCallum, S.A.; Miao, J.; Hart, C.; Tudryn, G.J.; Zhang, F.; Linhardt, R.J. Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR. Fuel 2015, 141, 39–45. [Google Scholar] [CrossRef]
- Kang, X.; Kirui, A.; Widanage, M.C.D.; Mentink-Vigier, F.; Cosgrove, D.J.; Wang, T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 2019, 10, 347. [Google Scholar] [CrossRef]
- Ibarra, D.; García-Fuentevilla, L.; Domínguez, G.; Martín-Sampedro, R.; Hernández, M.; Arias, M.E.; Santos, J.I.; Eugenio, M.E. NMR Study on Laccase Polymerization of Kraft Lignin Using Different Enzymes Source. Int. J. Mol. Sci. 2023, 24, 2359. [Google Scholar] [CrossRef]
- Yadav, R.; Zabihi, O.; Fakhrhoseini, S.; Nazarloo, H.A.; Kiziltas, A.; Blanchard, P.; Naebe, M. Lignin derived carbon fiber and nanofiber: Manufacturing and applications. Compos. Part B Eng. 2023, 255, 110613. [Google Scholar] [CrossRef]
- Österberg, M.; Sipponen, M.H.; Mattos, B.D.; Rojas, O.J. Spherical lignin particles: A review on their sustainability and applications. Green Chem. 2020, 22, 2712–2733. [Google Scholar] [CrossRef]
- Sipponen, M.H.; Lange, H.; Crestini, C.; Henn, A.; Österberg, M. Lignin for Nano- and Microscaled Carrier Systems: Applications, Trends, and Challenges. ChemSusChem 2019, 12, 2039–2054. [Google Scholar] [CrossRef]
- Ang, A.F.; Ashaari, Z.; Lee, S.H.; Tahir, P.M.; Halis, R. Lignin-based copolymer adhesives for composite wood panels—A review. Int. J. Adhes. Adhes. 2019, 95, 102408. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
Sample | Count Rate (kcps) | Hydrodynamic Diameter (nm) | PDI |
---|---|---|---|
Kraft lignin pH 12 | 373 | 188 | 0.29 |
Sol_BOD pH 12 | 1226 | 61 | 0.61 |
Sol_BOD pH 7 | 13,740 | 181 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delugeau, L.; Camy, A.; Alembik, L.; Poulin, P.; Gounel, S.; Mano, N.; Peruch, F.; Grelier, S. Homogeneous Polymerization of Kraft Lignin Using an Alkaliphilic Multi-Copper Oxidase (Bilirubin Oxidase) in a Borate Buffer. Polymers 2025, 17, 779. https://doi.org/10.3390/polym17060779
Delugeau L, Camy A, Alembik L, Poulin P, Gounel S, Mano N, Peruch F, Grelier S. Homogeneous Polymerization of Kraft Lignin Using an Alkaliphilic Multi-Copper Oxidase (Bilirubin Oxidase) in a Borate Buffer. Polymers. 2025; 17(6):779. https://doi.org/10.3390/polym17060779
Chicago/Turabian StyleDelugeau, Lou, Aurèle Camy, Léna Alembik, Philippe Poulin, Sébastien Gounel, Nicolas Mano, Frédéric Peruch, and Stéphane Grelier. 2025. "Homogeneous Polymerization of Kraft Lignin Using an Alkaliphilic Multi-Copper Oxidase (Bilirubin Oxidase) in a Borate Buffer" Polymers 17, no. 6: 779. https://doi.org/10.3390/polym17060779
APA StyleDelugeau, L., Camy, A., Alembik, L., Poulin, P., Gounel, S., Mano, N., Peruch, F., & Grelier, S. (2025). Homogeneous Polymerization of Kraft Lignin Using an Alkaliphilic Multi-Copper Oxidase (Bilirubin Oxidase) in a Borate Buffer. Polymers, 17(6), 779. https://doi.org/10.3390/polym17060779