Quantification of Hydrogen Peroxide in PVP and PVPVA Using 1H qNMR Spectroscopy
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Peroxide Quantification Using 1H qNMR
3.1.1. Standards and Mixtures
3.1.2. Equipment
3.1.3. Method Development for Quantitative 1H-NMR (1H-qNMR)
3.2. Method Verification Using Commercial Samples
3.2.1. PVP and PVPVA Raw Material
Lot-to-Lot Variation
3.2.2. PVPVA Sample Treatment
Hot Melt Extrusion (HME)
Ball Mill to Generate Powder from Excipient Extrudate
Storage Stability
3.2.3. Design of Experiments (DoE): Impact of Process Conditions on the Hydrogen Peroxide Content in Micronized Extruded PVPVA-U-A-2
4. Results and Discussion
4.1. Method Verification Using Commercial Samples
4.1.1. PVP and PVPVA Raw Material
Lot-to-Lot Variation
4.1.2. PVP-VA Sample Treatment
4.1.3. Design of Experiments (DoE): Impact of Process Conditions on the Hydrogen Peroxide Content in Micronized Extruded PVPVA-U-A-2
5. Industrial Applicability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarmpi, P.; Flanagan, T.; Meehan, E.; Mann, J.; Fotaki, N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur. J. Pharm. Biopharm. 2017, 111, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pifferi, G.; Restani, P. The safety of pharmaceutical excipients. Il Farm. 2003, 58, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Levons, J.; Narang, A.S.; Raghavan, K.; Rao, V.M. Reactive Impurities in Excipients: Profiling, Identification and Mitigation of Drug–Excipient Incompatibility. AAPS PharmSciTech 2011, 12, 1248–1263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pellett, J.D.; Narang, A.S.; Wang, Y.J.; Zhang, Y.T. Reactive impurities in large and small molecule pharmaceutical excipients—A review. TrAC Trends Anal. Chem. 2018, 101, 34–42. [Google Scholar] [CrossRef]
- Wu, Y.; Levons, J.K.; Narang, A.S.; Raghavan, K.; Mantri, R.V. Reactive impurities in excipients. Excip. Appl. Formul. Des. Drug Deliv. 2015, 12, 37–65. [Google Scholar]
- Gabrič, A.; Hodnik, Ž.; Pajk, S. Oxidation of Drugs during Drug Product Development: Problems and Solutions. Pharmaceutics 2022, 14, 325. [Google Scholar] [CrossRef]
- Wan, F.; Feng, X.; Yin, J.; Gao, H. Distinct H2O2-Scavenging System in Yersinia pseudotuberculosis: KatG and AhpC Act Together to Scavenge Endogenous Hydrogen Peroxide. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Gaboriau, F.; Vaultier, M.; Moulinoux, J.-P.; Delcros, J.-G. Antioxidative properties of natural polyamines and dimethylsilane analogues. Redox Rep. 2005, 10, 9–18. [Google Scholar] [CrossRef]
- Fernando, C.D.; Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef]
- Thompson, R.Q. Peroxidase-based colorimetric determination of L-ascorbic acid. Anal. Chem. 1987, 59, 1119–1121. [Google Scholar] [CrossRef]
- Keston, A.S.; Brandt, R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 1965, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tantawi, O.; Baalbaki, A.; El Asmar, R.; Ghauch, A. A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci. Total. Environ. 2018, 654, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, T.; Baj, S. Review: Advances in the Determination of Peroxides by Optical and Spectroscopic Methods. Anal. Lett. 2014, 47, 2129–2147. [Google Scholar] [CrossRef]
- Lu, C.-S.; Hughes, E.W.; Giguère, P.A. The Crystal Structure of the Urea—Hydrogen Peroxide Addition Compound CO (NH2) 2· H2O2. J. Am. Chem. Soc. 1941, 63, 1507–1513. [Google Scholar] [CrossRef]
- Monograph USP Povidone. Available online: https://online.uspnf.com/uspnf/document/1_GUID-CC6E908F-AE5A-43AD-BCC6-F4DDBC7A893F_6_en-US?source=SearchResults&highlight=povidone (accessed on 21 May 2024).
- Monograph USP Copovidone. Available online: https://online.uspnf.com/uspnf/document/1_GUID-D8A5F0D7-9622-47C3-B23A-4AA38DC95547_6_en-US?source=QuickSearch&highlight=copovidone (accessed on 21 May 2024).
- Sarabu, S.; Butreddy, A.; Bandari, S.; Batra, A.; Lawal, K.; Chen, N.N.; Kogan, M.; Bi, V.; Durig, T.; Repka, M.A. Preliminary investigation of peroxide levels of PlasdoneTM copovidones on the purity of atorvastatin calcium amorphous solid dispersions: Impact of plasticizers on hot melt extrusion processability. J. Drug Deliv. Sci. Technol. 2022, 70, 103190. [Google Scholar] [CrossRef]
- Hartauer, K.J.; Arbuthnot, G.N.; Baertschi, S.W.; Johnson, R.A.; Luke, W.D.; Pearson, N.G.; Rickard, E.C.; Tingle, C.A.; Tsang, P.K.S.; Wiens, R.E. Influence of Peroxide Impurities in Povidone and Crospovidone on the Stability of Raloxifene Hydrochloride in Tablets: Identification and Control of an Oxidative Degradation Product. Pharm. Dev. Technol. 2000, 5, 303–310. [Google Scholar] [CrossRef]
- Heczko, D.; Hachuła, B.; Maksym, P.; Kamiński, K.; Zięba, A.; Orszulak, L.; Paluch, M.; Kamińska, E. The effect of various poly (N-vinylpyrrolidone)(PVP) polymers on the crystallization of flutamide. Pharmaceuticals 2022, 15, 971. [Google Scholar] [CrossRef]
- Sperger, D.M.; Munson, E.J. Analysis of Structural Variability in Pharmaceutical Excipients Using Solid-State NMR Spectroscopy. Aaps Pharmscitech 2011, 12, 821–833. [Google Scholar] [CrossRef]
- Lynch, C.C.; Khirich, G.; Lee, R.T. Quantification of Biopharmaceutically Relevant Nonionic Surfactant Excipients Using Benchtop qNMR. Anal. Chem. 2024, 96, 6746–6755. [Google Scholar] [CrossRef]
- Diehl, B.W.K.; Malz, F.; Holzgrabe, U. Quantitative NMR spectroscopy in the quality evaluation of active pharmaceutical ingredients and excipients. Spectrosc. Eur. 2007, 19, 15–19. [Google Scholar]
- Beyer, T.; Diehl, B.; Holzgrabe, U. Quantitative NMR spectroscopy of biologically active substances and excipients. Bioanal. Rev. 2010, 2, 1–22. [Google Scholar] [CrossRef]
- Saraf, I.; Kushwah, V.; Contreras, L.; Carmody, A.; Liu, P.; Werner, B.; Zangger, K.; Paudel, A. Quantitative chemical profiling of cellulose acetate excipient via 13C NMR spectroscopy in controlled release formulations. J. Pharm. Biomed. Anal. 2022, 217, 114791. [Google Scholar] [CrossRef] [PubMed]
- Thulborn, K.R.; Ackerman, J.J.H. Absolute molar concentrations by NMR in inhomogeneous B1. A scheme for analysis of in vivo metabolites. J. Magn. Reson. 1983, 55, 357–371. [Google Scholar] [CrossRef]
- Malet Martino, M.; Holzgrabe, U. NMR techniques in biomedical and pharmaceutical analysis. J. Pharm. Biomed. Anal. 2011, 55, 1–15. [Google Scholar] [CrossRef]
- Maggio, R.M.; Calvo, N.L.; Vignaduzzo, S.E.; Kaufman, T.S. Pharmaceutical impurities and degradation products: Uses and applications of NMR techniques. J. Pharm. Biomed. Anal. 2014, 101, 102–122. [Google Scholar] [CrossRef]
- Yau, W.; Goh, C.H.; Koh, H. Quality control and quality assurance of phytomedicines: Key considerations, methods, and analytical challenges. Phyther. Effic. safety, Regul. 2015, 18–48. [Google Scholar]
- Liu, Y. Quantitative NMR in Quality Control. In Quality Control of Chinese Medicines: Strategies and Methods; Springer Nature Singapore: Singapore, 2024; pp. 691–757. [Google Scholar]
- Elipe, M.V.S. NMR Detective Agency: Uncovering the Truth for Process Chemists. Org. Process. Res. Dev. 2025. [Google Scholar] [CrossRef]
- Yu, Y.B.; Taraban, M.B.; Wang, W.; Briggs, K.T. Improving Biopharmaceutical Safety through Verification-Based Quality Control. Trends Biotechnol. 2017, 35, 1140–1155. [Google Scholar] [CrossRef]
- Afonso Urich, J.A.; Marko, V.; Boehm, K.; Werner, B.; Zangger, K.; Saraf, I.; Paudel, A.; Kushwah, V. Accelerative Solid-State Oxidation Behaviour of Amorphous and Partially Crystalline Venetoclax. AAPS PharmSciTech 2024, 25, 114. [Google Scholar] [CrossRef]
- Iyer, J.; Karn, A.; Brunsteiner, M.; Ray, A.; Davis, A.; Saraf, I.; Paudel, A. Screening autoxidation propensities of drugs in the solid-state using PVP and in the solution state using N-Methyl pyrrolidone. Pharmaceutics 2023, 15, 848. [Google Scholar] [CrossRef]
- Saraf, I.; Jakasanovski, O.; Stanić, T.; Kralj, E.; Petek, B.; Williams, J.D.; Dmytro, N.; Georg, G.; Bernd, W.; Klaus, Z. Investigation of the Influence of Copovidone Properties and Hot-Melt Extrusion Process on Level of Impurities, In Vitro Release, and Stability of an Amorphous Solid Dispersion Product. Mol. Pharm. 2024, 21, 5703–5715. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R.; Manchanda, S.; Das, P.; Velu, V.; Malipeddi, H.; Pabreja, K.; Pinto, T.D.J.A.; Gupta, G.; Dua, K. Poly (vinylpyrrolidone). In Engineering of Biomaterials for Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–272. [Google Scholar]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Narang, A.S.; Desai, D.; Badawy, S. Impact of excipient interactions on solid dosage form stability. Excip. Appl. Formul. Des. Drug Deliv. 2015, 29, 93–137. [Google Scholar]
- Alshahrouri, B.; Yang, F.; Schwing, Q.; Dürig, T.; Fassihi, R. Hot-melt extrusion based sustained release ibrutinib delivery system: An inhibitor of Bruton’s Tyrosine Kinase (BTK). Int. J. Pharm. 2021, 607, 120981. [Google Scholar] [CrossRef]
- Alshahrouri, B. Development of an Amorphous Based Sustained Release Tablet of Melt Extruded Ibrutinib a Bruton’s Tyrosine Kinase Inhibitor; Temple University: Philadephia, PA, USA, 2021; ISBN 9798538103652. [Google Scholar]
- Iyer, J.; Barbosa, M.; Saraf, I.; Pinto, J.F.; Paudel, A. Mechanoactivation as a tool to assess the autoxidation propensity of amorphous drugs. Mol. Pharm. 2023, 20, 1112–1128. [Google Scholar] [CrossRef]
- Modhave, D.; Barrios, B.; Paudel, A. PVP-H2O2 Complex as a New Stressor for the Accelerated Oxidation Study of Pharmaceutical Solids. Pharmaceutics 2019, 11, 457. [Google Scholar] [CrossRef]
- Lachtermacher, M.G.; Rudin, A. Reactive processing of LLDPES in corotating intermeshing twin-screw extruder. II. Effect of peroxide treatment on processability. J. Appl. Polym. Sci. 1995, 58, 2433–2449. [Google Scholar] [CrossRef]
- Kim, K.J.; Ok, Y.S.; Kim, B.K. Crosslinking of polyethylene with peroxide and multifunctional monomers during extrusion. Eur. Polym. J. 1992, 28, 1487–1491. [Google Scholar] [CrossRef]
- Tang, Y.; Tzoganakis, C.; Hamielec, A.E.; Vlachopoulos, J. Peroxide crosslinking of LLDPE during reactive extrusion. Adv. Polym. Technol. J. Polym. Process. Inst. 1989, 9, 217–226. [Google Scholar] [CrossRef]
- Kubat, K.; Strojewski, D.; Majda, D.; Jakubiec, D.; Andrzejowska, A.; Bogdał, A.; Krupa, A.; Harańczyk, H. Molecular phenomena related to moisture uptake in amorphous solid dispersion loaded with bosentan monohydrate and copovidone. Powder Technol. 2023, 430, 119020. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.G. Preparation and swelling behavior of moisture-absorbing polyurethane films impregnated with superabsorbent sodium polyacrylate particles. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Akinoso, R.; Aboaba, S.A.; Olayanju, T.M.A. Effects of moisture content and heat treatment on peroxide value and oxidative stability of un-refined sesame oil. Afr. J. Food Agric. Nutr. Dev. 2010, 10. [Google Scholar] [CrossRef]
- Kushwah, V.; Poms, J.; Vuylsteke, B.; Peter, A.; Paudel, A. Towards an Understanding of the Adsorption of Vaporized Hydrogen Peroxide (VHP) Residues on Glass Vials After a VHP Decontamination Process Using a Miniaturized Tool. J. Pharm. Sci. 2020, 109, 2454–2463. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.C.; Bochmann, E.S.; Kyeremateng, S.O.; Gryczke, A.; Wagner, K.G. Holistic QbD approach for hot-melt extrusion process design space evaluation: Linking materials science, experimentation and process modeling. Eur. J. Pharm. Biopharm. 2019, 141, 149–160. [Google Scholar] [CrossRef]
- Widmann, C.; Ravasio, D.; Ladwig, T. Material selection as a control strategy to limit hydrogen peroxide residuals in drug products. TechnoPharm 2021, 11. Available online: https://www.ecv.de/beitrag/TechnoPharm/Material_selection_as_a_control_strategy_to_limit_hydrogen_peroxide_residuals_in_drug_products (accessed on 21 May 2024).
- Yue, H.; Bu, X.; Huang, M.-H.; Young, J.; Raglione, T. Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high performance liquid chromatography with coulometric detection. Int. J. Pharm. 2009, 375, 33–40. [Google Scholar] [CrossRef]
- Dutta, K.; Zheng, T.; Hetrick, E.M. Comparative understanding of peroxide quantitation assays: A case study with peptide drug product degradation. Anal. Methods 2024, 16, 4755–4764. [Google Scholar] [CrossRef]
Polymer Grades | Lot 1 | Lot 2 | |
---|---|---|---|
PVP | K-30_Sigma | K30-S-1 | K30-S-2 |
K-60_Sigma | K60-S-1 | K60-S-2 | |
K-90_Sigma | K90-S-1 | K90-S-2 | |
K-30_BASF | K30-B-1 | K30-B-2 | |
K-90_BASF | K90-B-1 | K90-B-2 | |
K-30_Ashland | K30-A-1 | K30-A-2 | |
K-90_Ashland | K90-A-1 | K90-A-2 | |
PVPVA | BASF | PVPVA-B-1 | PVPVA-B-2 |
Ashland | PVPVA-A-1 | PVPVA-A-2 | |
Ultra_Ashland | PVPVA-U-A-1 | PVPVA-U-A-2 |
Sample Nr. | Sample Name | Concentration of Peroxide in 1 mL DMSO (in PPM) | Hx | Hs | Hx/Hs |
---|---|---|---|---|---|
1 | 0.00001% W/V (0.1 PPM) | 0.1 | 2073.4 | 85,642 | 0.02 |
2 | 0.00005% W/V (0.5 PPM) | 0.5 | 8469.7 | 85,165 | 0.10 |
3 | 0.0001% W/V (1 PPM) | 1 | 13,927 | 87,264 | 0.16 |
4 | 0.0002% W/V (2 PPM) | 2 | 29,272 | 85,345 | 0.34 |
5 | 0.0003% W/V (3 PPM) | 3 | 44,177 | 82,343 | 0.54 |
6 | 0.0005% W/V (5 PPM) | 5 | 75,527 | 83,576 | 0.90 |
7 | 0.001% W/V (10 PPM) | 10 | 167,247 | 86,954 | 1.92 |
DOE Levels | Excipient (PVPVA-U-A-2) | Stability Conditions | ||
---|---|---|---|---|
PSD | Initial Radical Content | Temperature | Humidity | |
−1 | <50 µm | Low | 25 °C | 0–20% |
0 | 50–250 µm | Medium | 40 °C | 45% |
1 | 250–400 µm | High | 70 °C | 75% |
Control Samples | Excipient (PVPVA-U-A-2) | ||
---|---|---|---|
Sample Name | PSD of Excipient | Initial Radical Content in Excipient | |
Day-0 | E1 | <50 µm | High |
E2 | <50 µm | Medium | |
E3 | <50 µm | Low | |
E4 | 50–250 µm | High | |
E5 | 50–250 µm | Medium | |
E6 | 50–250 µm | Low | |
E7 | 250–400 µm | High | |
E8 | 250–400 µm | Medium | |
E9 | 250–400 µm | Low | |
Instability conditions at different points (3, 14, 28, d) | E3_(25C,20RH) | <50 µm | Low |
E9_(70C,20RH) | 250–400 µm | Low | |
E1_(70C,20RH) | <50 µm | High | |
E1_(25C,75RH) | <50 µm | High | |
E7_(25C,75RH) | 250–400 µm | High | |
E3_(70C,75RH) | <50 µm | Low | |
E5_(40C,45RH) | 50–250 µm | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraf, I.; Kushwah, V.; Werner, B.; Zangger, K.; Paudel, A. Quantification of Hydrogen Peroxide in PVP and PVPVA Using 1H qNMR Spectroscopy. Polymers 2025, 17, 739. https://doi.org/10.3390/polym17060739
Saraf I, Kushwah V, Werner B, Zangger K, Paudel A. Quantification of Hydrogen Peroxide in PVP and PVPVA Using 1H qNMR Spectroscopy. Polymers. 2025; 17(6):739. https://doi.org/10.3390/polym17060739
Chicago/Turabian StyleSaraf, Isha, Varun Kushwah, Bernd Werner, Klaus Zangger, and Amrit Paudel. 2025. "Quantification of Hydrogen Peroxide in PVP and PVPVA Using 1H qNMR Spectroscopy" Polymers 17, no. 6: 739. https://doi.org/10.3390/polym17060739
APA StyleSaraf, I., Kushwah, V., Werner, B., Zangger, K., & Paudel, A. (2025). Quantification of Hydrogen Peroxide in PVP and PVPVA Using 1H qNMR Spectroscopy. Polymers, 17(6), 739. https://doi.org/10.3390/polym17060739