Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products
Abstract
:1. Introduction
2. Methodology
3. Biopolymers from Agri-Food Waste and By-Products for Food Packaging Applications
3.1. Physical and Chemical Properties of Plant-Origin Biopolymers
3.2. Physical and Chemical Properties of Animal-Origin Biopolymers
3.3. Physical and Chemical Properties of Microbial-Origin Biopolymers
4. Influence of Biopolymers from Agri-Food Waste and By-Products on Film Structure and Properties
4.1. Structuring Biopolymers
4.2. Filler Biopolymers
5. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CWS | cactus fruit waste seed |
CMF | cellulose microfibril |
CNF | cellulose nanofibril |
CNW | cellulose nanowhisker |
DD | degree of deacetylation |
DM | degree of methyl esterification |
MCC | microcrystalline cellulose |
MMC | mixed microbial consortium |
Mw | molecular weight |
NCC | nanocrystalline cellulose |
PHBV | poly(3-hydroxybutyrate-co-3-hydroxyvalerate) |
PBAT | polybutylene adipate terephthalate |
PBS | polybutylene succinate |
PCL | polycaprolactone |
PCL | polycaprolactone |
PEA | polyester amide |
PHA | polyhydroxyalkanoate |
PHB | polyhydroxybutyrate |
PLA | polylactic acid |
PVA | poly(vinyl alcohol) |
SEM | scanning electron microscope |
SBR | sequencing batch reactor |
VFA | volatile fatty acid |
WVP | water vapor permeability |
References
- Robertson, G.L. Food Packaging and Shelf Life. In Food Packaging and Shelf Life: A Practical Guide; Robertson, G.L., Ed.; CRC Press: New York, NY, USA, 2010; pp. 1–15. [Google Scholar] [CrossRef]
- Hallez, L.; Vansteenbeeck, H.; Boen, F.; Smits, T. Persuasive packaging? The impact of packaging color and claims on young consumers’ perceptions of product healthiness, sustainability and tastiness. Appetite 2023, 182, 106433. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.J. Food Packaging Materials, Barrier Properties, and Selection. In Handbook of Food Engineering Practice; Valentas, K.J., Rotstein, E., Singh, R.P., Eds.; CRC Press: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- European Commission. Plastics Strategy. Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en (accessed on 18 December 2024).
- Kan, M.; Miller, S. Environmental impacts of plastic packaging of food products. Resour. Conserv. Recycl. 2022, 180, 106156. [Google Scholar] [CrossRef]
- Petersen, K.; Nielsen, P.V.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [Google Scholar] [CrossRef]
- FAO. Platform on Food Loss and Waste. Available online: https://www.fao.org/platform-food-loss-waste/flw-data/en/ (accessed on 18 December 2024).
- Kargbo, H.O.; Harris, J.; Phan, A.N. “Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability. Renew. Sustain. Energy Rev. 2021, 135, 110168. [Google Scholar] [CrossRef]
- Sen, K.Y.; Baidurah, S. Renewable biomass feedstocks for production of sustainable biodegradable polymer. Curr. Opin. Green Sustain. Chem. 2021, 27, 100412. [Google Scholar] [CrossRef]
- Azka, M.A.; Adam, A.; Ridzuan, S.M.; Sapuan, S.M.; Habib, A. A review on the enhancement of circular economy aspects focusing on nanocellulose composites. Int. J. Biol. Macromol. 2024, 269, 132052. [Google Scholar] [CrossRef]
- Dey, P.; Bhattacharjee, S.; Yadav, D.K.; Hmar, B.Z.; Gayen, K.; Bhowmick, T.K. Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. Int. J. Biol. Macromol. 2023, 253, 127412. [Google Scholar] [CrossRef]
- Rajvanshi, J.; Sogani, M.; Kumar, A.; Arora, S.; Syed, Z.; Sonu, K.; Gupta, N.; Kalra, A. Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. Sci. Total Environ. 2023, 874, 162441. [Google Scholar] [CrossRef]
- Bruno, M.; Giancone, T.; Torrieri, E.; Masi, P.; Moresi, M. Engineering Properties of Edible Transglutaminase Cross-Linked Caseinate-Based Films. Food Bioprocess Technol. 2007, 1, 393–404. [Google Scholar] [CrossRef]
- Giancone, T.; Torrieri, E.; Di Pierro, P.; Mariniello, L.; Moresi, M.; Porta, R.; Masi, P. Role of Constituents on the Network Formation of Hydrocolloid Edible Films. J. Food Eng. 2008, 89, 195–203. [Google Scholar] [CrossRef]
- Perone, N.; Torrieri, E.; Cavella, S.; Masi, P. Effect of Rosemary Oil and HPMC Concentrations on Film Structure and Properties. Food Bioprocess Technol. 2014, 7, 605–609. [Google Scholar] [CrossRef]
- Torrieri, E.; Cavella, S.; Masi, P. Effect of Rosemary Oil and an Emulsion of Essential Oils on Structure and Physical Properties of Chitosan Film. Chem. Eng. Trans. 2015, 43, 25–30. [Google Scholar] [CrossRef]
- Perone, N.; Torrieri, E.; Nicolai, M.A.; Cavella, S.; Addeo, F.; Masi, P. Structure and Properties of Hydroxypropyl Methyl Cellulose—Sodium Caseinate Film Cross-Linked by TGase. Food Packag. Shelf Life 2014, 1, 113–122. [Google Scholar] [CrossRef]
- Fiore, S.; Park, S.; Volpe, S.; Torrieri, E.; Masi, P. Active Packaging Based on PLA and Chitosan-Caseinate Enriched Rosemary Essential Oil Coating for Fresh Minced Chicken Breast Application. Food Packag. Shelf Life 2021, 29, 100708. [Google Scholar] [CrossRef]
- Di Giuseppe, F.B.; Volpe, S.; Cavella, S.; Masi, P.; Torrieri, E. Physical Properties of Active Biopolymer Films Based on Chitosan, Sodium Caseinate, and Rosemary Essential Oil. Food Packag. Shelf Life 2022, 32, 100817. [Google Scholar] [CrossRef]
- Sani, I.K.; Masoudpour-Behabadi, M.; Sani, M.A.; Motalebinejad, H.; Juma, A.S.; Asdagh, A. Value-Added Utilization of Fruit and Vegetable Processing By-Products for the Manufacture of Biodegradable Food Packaging Films. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef] [PubMed]
- Bayram, B.; Ozkan, G.; Kostka, T.; Capanoglu, E.; Esatbeyoglu, T. Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials. Molecules 2021, 26, 4031. [Google Scholar] [CrossRef]
- Gabriel, T.; Belete, A.; Syrowatka, F.; Neubert, R.H.; Gebre-Mariam, T. Extraction and Characterization of Celluloses from Various Plant Byproducts. Int. J. Biol. Macromol. 2020, 158, 1248–1258. [Google Scholar] [CrossRef]
- Shao, X.; Wang, J.; Liu, Z.; Hu, N.; Liu, M.; Xu, Y. Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob. Ind. Crops Prod. 2020, 151, 112457. [Google Scholar] [CrossRef]
- Al-Saidi, H.M.; El-Shahawi, M.S. An Innovative Platform Exploiting Solid Microcrystalline Cellulose for Selective Separation of Bromate Species in Drinking Water: Preparation, Characterization, Kinetics and Thermodynamic Study. Microchem. J. 2020, 159, 105510. [Google Scholar] [CrossRef]
- Ait Benhamou, Z.; Kassab, A.; Boussetta, M.H.; Salim, E.; Ablouh, M.; Nadifiyine, M.; Qaiss, A.E.K.; Moubarik, A.; El Achaby, M. Beneficiation of Cactus Fruit Waste Seeds for the Production of Cellulose Nanostructures: Extraction and Properties. Int. J. Biol. Macromol. 2022, 203, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Benito-González, M.M.; Ortiz-Gimeno, A.; López-Rubio, A.; Martínez-Abad, A.; Garrido-Fernández, A.; Martínez-Sanz, M. Sustainable Starch Biocomposite Films Fully-Based on White Rice (Oryza sativa) Agroindustrial By-Products. Food Bioprod. Process. 2022, 136, 47–58. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.; Di Pierro, P.; Di Girolamo, R.; Regalado-González, C.; Porta, R. Valorisation of Posidonia oceanica Sea Balls (Egagropili) as a Potential Source of Reinforcement Agents in Protein-Based Biocomposites. Polymers 2020, 12, 2788. [Google Scholar] [CrossRef]
- Khalil, R.K.; Sharaby, M.R.; Abdelrahim, D.S. Novel Active Edible Food Packaging Films Based Entirely on Citrus Peel Wastes. Food Hydrocoll. 2023, 134, 107961. [Google Scholar] [CrossRef]
- Sood, C.S.; Saini, R. Red Pomelo Peel Pectin-Based Edible Composite Films: Effect of Pectin Incorporation on Mechanical, Structural, Morphological and Thermal Properties of Composite Films. Food Hydrocoll. 2022, 123, 107135. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Nguyen, H.V.; Savage, G.P. Properties of Pectin Extracted from Vietnamese Mango Peels. Foods 2019, 8, 629. [Google Scholar] [CrossRef]
- Gonçalves, I.; Lopes, J.; Barra, A.; Hernández, D.; Nunes, C.; Kapusniak, K.; Kapusniak, J.; Evtyugin, D.V.; da Silva, J.A.L.; Ferreira, P.; et al. Tailoring the Surface Properties and Flexibility of Starch-Based Films Using Oil and Waxes Recovered from Potato Chips Byproducts. Int. J. Biol. Macromol. 2020, 163, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.; Gonçalves, I.; Nunes, C.; Teixeira, B.; Mendes, R.; Ferreira, P.; Coimbra, M.A. Potato Peel Phenolics as Additives for Developing Active Starch-Based Films with Potential to Pack Smoked Fish Fillets. Food Packag. Shelf Life 2021, 28, 100644. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Di Girolamo, R.; Famiglietti, M.; Porta, R. Hemp (Cannabis sativa) Seed Oilcake as a Promising By-Product for Developing Protein-Based Films: Effect of Transglutaminase-Induced Crosslinking. Food Packag. Shelf Life 2022, 31, 100779. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Matebie, B.Y.; Tizazu, B.Z.; Kadhem, A.A.; Venkatesa Prabhu, S. Synthesis of Cellulose Nanocrystals (CNCs) from Brewer’s Spent Grain Using Acid Hydrolysis: Characterization and Optimization. J. Nanomater. 2021, 2021, 7133154. [Google Scholar] [CrossRef]
- Schieber, A. Side Streams of Plant Food Processing as a Source of Valuable Compounds: Selected Examples. Annu. Rev. Food Sci. Technol. 2017, 8, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Frosi, A.; Balduzzi, A.; Moretto, G.; Colombo, R.; Papetti, A. Towards Valorization of Food-Waste-Derived Pectin: Recent Advances on Their Characterization and Application. Molecules 2023, 28, 6390. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gaur, V.K.; Farooqui, A.; Varjani, S.; Younis, K. Sustainable Utilization of Citrus limetta Peel for Obtaining Pectin and Its Application in Cookies as a Fat Replacer. J. Food Sci. Technol. 2023, 60, 975–986. [Google Scholar] [CrossRef]
- Baron, R.D.; Pérez, L.L.; Salcedo, J.M.; Córdoba, L.P.; do Amaral Sobral, P.J. Production and Characterization of Films Based on Blends of Chitosan from Blue Crab (Callinectes sapidus) Waste and Pectin from Orange (Citrus sinensis Osbeck) Peel. Int. J. Biol. Macromol. 2017, 98, 676–683. [Google Scholar] [CrossRef]
- Lin, D.; Zheng, Y.; Wang, X.; Huang, Y.; Ni, L.; Chen, X.; Wu, Z.; Huang, C.; Yi, Q.; Li, J.; et al. Study on Physicochemical Properties, Antioxidant and Antimicrobial Activity of Okara Soluble Dietary Fiber/Sodium Carboxymethyl Cellulose/Thyme Essential Oil Active Edible Composite Films Incorporated with Pectin. Int. J. Biol. Macromol. 2020, 165, 1241–1249. [Google Scholar] [CrossRef]
- Beikzadeh, S.; Khezerlou, A.; Jafari, S.M.; Pilevar, Z.; Mortazavian, A.M. Seed Mucilages as the Functional Ingredients for Biodegradable Films and Edible Coatings in the Food Industry. Adv. Colloid Interface Sci. 2020, 280, 102164. [Google Scholar] [CrossRef]
- de Sousa Silva, R.; Fernandes, F.G.; Dantas, A.M.; de Carvalho, L.M.; da Costa, W.K.A.; dos Santos Lima, M.; Magnani, M.; da Silva Campelo Borges, G. Juá (Ziziphus joazeiro Mart.) Mucilage and Juá By-Product Phenolic Extract Improve Quality Parameters and Retain Bioactive Compounds in Fresh-Cut Pineapple During Storage. Food Res. Int. 2022, 161, 111826. [Google Scholar] [CrossRef]
- Oyom, W.; Zhang, Z.; Bi, Y.; Tahergorabi, R. Application of Starch-Based Coatings Incorporated with Antimicrobial Agents for Preservation of Fruits and Vegetables: A Review. Prog. Org. Coat. 2022, 166, 106800. [Google Scholar] [CrossRef]
- Fetzer, C.; Hintermayr, M.; Schmid, A.; Stäbler, P.; Eisner, P. Effect of Acylation of Rapeseed Proteins with Lauroyl and Oleoyl Chloride on Solubility and Film-Forming Properties. Waste Biomass Valorization 2020, 12, 745–755. [Google Scholar] [CrossRef]
- Riveros, C.G.; Martin, M.P.; Aguirre, A.; Grosso, N.R. Film Preparation with High Protein Defatted Peanut Flour: Characterization and Potential Use as Food Packaging. Int. J. Food Sci. Technol. 2018, 53, 969–975. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Rodrigues, J.M.; Valadares, A.C.F.; de Almeida, A.B.; de Lima, T.M.; Takeuchi, K.P.; Alves, C.C.F.; Sousa, H.A.d.F.; da Silva, E.R.; Dyszy, F.H.; et al. Active Food Packaging: Alginate Films with Cottonseed Protein Hydrolysates. Food Hydrocoll. 2019, 92, 267–275. [Google Scholar] [CrossRef]
- Sabbah, M.; Altamimi, M.; Di Pierro, P.; Schiraldi, C.; Cammarota, M.; Porta, R. Black Edible Films from Protein-Containing Defatted Cake of Nigella sativa Seeds. Int. J. Mol. Sci. 2020, 21, 832. [Google Scholar] [CrossRef]
- Fathi, N.; Almasi, H.; Pirouzifard, M.K. Effect of Ultraviolet Radiation on Morphological and Physicochemical Properties of Sesame Protein Isolate-Based Edible Films. Food Hydrocoll. 2018, 85, 136–143. [Google Scholar] [CrossRef]
- Karimian, Z.; Tabatabaee Bafroee, A.S.; Sharifan, A. Physico-Mechanical and Antimicrobial Properties of Isolated Soy Protein Film Incorporated with Peppermint Essential Oil on Raw Hamburger. J. Agric. Sci. Technol. 2019, 21, 1145–1159. [Google Scholar]
- Dapčević-Hadnađev, T.; Dizdar, M.; Pojić, M.; Krstonošić, V.; Zychowski, L.M.; Hadnađev, M. Emulsifying Properties of Hemp Proteins: Effect of Isolation Technique. Food Hydrocoll. 2019, 89, 912–920. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, Y.; Han, Q.; Ji, L.; Zhang, H.; Fei, Z.; Wang, Y. Comparison of the Physicochemical, Rheological, and Morphologic Properties of Chitosan from Four Insects. Carbohydr. Polym. 2019, 209, 266–275. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; He, Q.; Li, X.; Zhang, A. Extraction Optimization and Characterization of Gelatin from Half-Smooth Tongue Sole (Cynoglossus semilaevis Günther) Skin. J. Aquat. Food Prod. Technol. 2019, 28, 637–648. [Google Scholar] [CrossRef]
- Yang, F.; Chen, L.; Zhao, D.; Guo, T.; Yu, D.; Zhang, X.; Li, P.; Chen, J. A Novel Water-Soluble Chitosan Grafted with Nerol: Synthesis, Characterization and Biological Activity. Int. J. Biol. Macromol. 2023, 232, 123498. [Google Scholar] [CrossRef]
- Tavares, L.; Flores, E.E.E.; Rodrigues, R.C.; Hertz, P.F.; Noreña, C.P.Z. Effect of Deacetylation Degree of Chitosan on Rheological Properties and Physical-Chemical Characteristics of Genipin-Crosslinked Chitosan Beads. Food Hydrocoll. 2020, 106, 105876. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Q.; Chu, Y.; Tao, N.; Deng, S.; Wang, L.; Li, L. Application of Gelatin in Food Packaging: A Review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, C.; He, Q. Effect of Orange (Citrus sinensis L.) Peel Essential Oil on Characteristics of Blend Films Based on Chitosan and Fish Skin Gelatin. Food Biosci. 2021, 41, 100927. [Google Scholar] [CrossRef]
- Sekarina, A.S.; Munawaroh, H.S.H.; Susanto, E.; Show, P.L.; Ningrum, A. Effects of Edible Coatings of Chitosan-Fish Skin Gelatine Containing Black Tea Extract on Quality of Minimally Processed Papaya During Refrigerated Storage. Carbohydr. Polym. Technol. Appl. 2023, 5, 100287. [Google Scholar] [CrossRef]
- Kaynarca, G.B.; Gümüş, T.; Kamer, D.D.A. Rheological Properties of Fish (Sparus aurata) Skin Gelatin Modified by Agricultural Wastes Extracts. Food Chem. 2022, 393, 133348. [Google Scholar] [CrossRef] [PubMed]
- Güzel, M.; Akpınar, Ö. Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste Biomass Valor. 2019, 10, 2165–2175. [Google Scholar] [CrossRef]
- Davaritouchaee, M.; Mosleh, I.; Dadmohammadi, Y.; Abbaspourrad, A. One-Step Oxidation of Orange Peel Waste to Carbon Feedstock for Bacterial Production of Polyhydroxybutyrate. Polymers 2023, 15, 697. [Google Scholar] [CrossRef]
- Etxabide, P.A.; Kilmartin, P.; Guerrero, K.; de la Caba, D.O.; Hooks, M.; West, M.; Singh, T. Polyhydroxybutyrate (PHB) Produced from Red Grape Pomace: Effect of Purification Processes on Structural, Thermal and Antioxidant Properties. Int. J. Biol. Macromol. 2022, 217, 449–456. [Google Scholar] [CrossRef]
- Kovalcik, S.; Obruca, M.; Kalina, M.; Machovsky, M.; Enev, V.; Jakesova, M.; Sobkova, M.; Marova, I. Enzymatic Hydrolysis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds. Materials 2020, 13, 2992. [Google Scholar] [CrossRef]
- Alsafadi, D.; Ibrahim, M.I.; Alamry, K.A.; Hussein, M.A.; Mansour, A. Utilizing the crop waste of date palm fruit to biosynthesize polyhydroxyalkanoate bioplastics with favorable properties. Sci. Total Environ. 2020, 737, 139716. [Google Scholar] [CrossRef]
- Gnaim, R.; Unis, R.; Gnayem, N.; Das, J.; Shamis, O.; Gozin, M.; Golberg, A. Avocado seed waste bioconversion into poly (3-hydroxybutyrate) by using Cobetia amphilecti and ethyl levulinate as a green extractant. Int. J. Biol. Macromol. 2023, 239, 124371. [Google Scholar] [CrossRef]
- Urbina, L.; Wongsirichot, P.; Corcuera, M.Á.; Gabilondo, N.; Eceiza, A.; Winterburn, J.; Retegi, A. Application of Cider By-Products for Medium Chain Length Polyhydroxyalkanoate Production by Pseudomonas putida KT2440. Eur. Polym. J. 2018, 108, 1–9. [Google Scholar] [CrossRef]
- Vu, D.H.; Mahboubi, A.; Root, A.; Heinmaa, I.; Taherzadeh, M.J.; Åkesson, D. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids. Membranes 2023, 13, 569. [Google Scholar] [CrossRef]
- Maity, S.; Das, S.; Mohapatra, S.; Tripathi, A.D.; Akthar, J.; Pati, S.; Samantaray, D. Growth Associated Polyhydroxybutyrate Production by the Novel Zobellellae tiwanensis Strain DD5 from Banana Peels under Submerged Fermentation. Int. J. Biol. Macromol. 2020, 153, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Psaki, O.; Athanasoulia, I.G.I.; Giannoulis, A.; Briassoulis, D.; Koutinas, A.; Ladakis, D. Fermentation Development Using Fruit Waste Derived Mixed Sugars for Poly(3-hydroxybutyrate) Production and Property Evaluation. Bioresour. Technol. 2023, 382, 129077. [Google Scholar] [CrossRef]
- Vega-Castro, O.; León, E.; Arias, M.; Cesario, M.T.; Ferreira, F.; da Fonseca, M.M.R.; Segura, A.; Valencia, P.; Simpson, R.; Nuñez, H.; et al. Characterization and Production of a Polyhydroxyalkanoate from Cassava Peel Waste: Manufacture of Biopolymer Microfibers by Electrospinning. J. Polym. Environ. 2021, 29, 187–200. [Google Scholar] [CrossRef]
- Sá, N.M.; Mattos, A.L.; Silva, L.M.; Brito, E.S.; Rosa, M.F.; Azeredo, H.M. From Cashew Byproducts to Biodegradable Active Materials: Bacterial Cellulose-Lignin-Cellulose Nanocrystal Nanocomposite Films. Int. J. Biol. Macromol. 2020, 161, 1337–1345. [Google Scholar] [CrossRef]
- Pereira, J.R.; Araújo, D.; Freitas, P.; Marques, A.C.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Fortunato, E.; Reis, M.A.; Freitas, F. Production of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis Subsp. aurantiaca: Cultivation on Fruit Pulp Waste and Polymer Characterization. Int. J. Biol. Macromol. 2021, 167, 85–92. [Google Scholar] [CrossRef]
- Lagoa-Costa, B.; Kennes, C.; Veiga, M.C. Exploiting Cheese Whey for Efficient Selection of Polyhydroxyalkanoates-Storing Bacteria. Fermentation 2023, 9, 574. [Google Scholar] [CrossRef]
- Riedel, S.L.; Donicz, E.N.; Ferré-Aparicio, P.; Santolin, L.; Marbà-Ardébol, A.-M.; Neubauer, P.; Junne, S. Workflow for Shake Flask and Plate Cultivations with Fats for Polyhydroxyalkanoate Bioproduction. Appl. Microbiol. Biotechnol. 2023, 107, 4493–4505. [Google Scholar] [CrossRef]
- Pinyaphong, P.; Sriburi, P. Optimum Condition for Polyhydroxyalkanoate Production from Crude Glycerol by Bacillus sp. Isolated from Lipid-Containing Wastewater. Trends Sci. 2022, 19, 2588. [Google Scholar] [CrossRef]
- Corrado, R.; Argenziano, R.; Borselleca, E.; Moccia, F.; Panzella, L.; Pezzella, C. Cascade Disassembling of Spent Coffee Grounds into Phenols, Lignin and Fermentable Sugars En Route to a Green Active Packaging. Sep. Purif. Technol. 2024, 334, 125998. [Google Scholar] [CrossRef]
- Corchado-Lopo, C.; Martínez-Ávila, O.; Marti, E.; Llimós, J.; Busquets, A.M.; Kucera, D.; Obruca, S.; Llenas, L.; Ponsá, S. Brewer’s Spent Grain as a No-Cost Substrate for Polyhydroxyalkanoates Production: Assessment of Pretreatment Strategies and Different Bacterial Strains. New Biotechnol. 2021, 62, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Arias-Roblero, M.; Mora-Villalobos, V.; Velazquez-Carrillo, C. Evaluation of Fed-Batch Fermentation for Production of Polyhydroxybutyrate with a Banana Pulp Juice Substrate from an Agro-Industrial By-Product. Front. Sustain. Food Syst. 2021, 5, 681596. [Google Scholar] [CrossRef]
- Kovalcik, I.; Pernicova, S.; Obruca, S.; Szotkowski, M.; Enev, V.; Kalina, M.; Marova, I. Grape Winery Waste as a Promising Feedstock for the Production of Polyhydroxyalkanoates and Other Value-Added Products. Food Bioprod. Process. 2020, 124, 1–10. [Google Scholar] [CrossRef]
- Brojanigo, S.; Parro, E.; Cazzorla, T.; Favaro, L.; Basaglia, M.; Casella, S. Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using Cupriavidus necator DSM 545. Polymers 2020, 12, 1496. [Google Scholar] [CrossRef]
- Brojanigo, S.; Gronchi, N.; Cazzorla, T.; Wong, T.S.; Basaglia, M.; Favaro, L.; Casella, S. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. Bioresour. Technol. 2022, 347, 126383. [Google Scholar] [CrossRef]
- Brojanigo, S.; Alvarado-Morales, M.; Basaglia, M.; Casella, S.; Favaro, L.; Angelidaki, I. Innovative co-production of polyhydroxyalkanoates and methane from broken rice. Sci. Total Environ. 2022, 825, 153931. [Google Scholar] [CrossRef]
- Saratale, G.D.; Saratale, R.G.; Varjani, S.; Cho, S.K.; Ghodake, G.S.; Kadam, A.; Shin, H.S. Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind. Crops Prod. 2020, 150, 112425. [Google Scholar] [CrossRef]
- Madi, F.; Hachicha, R.; Gamero, J.E.R.; Gupte, A.P.; Gronchi, N.; Haddad, M.; Basaglia, M. Exploitation of spoilage dates as biomass for the production of bioethanol and polyhydroxyalkanoates. Renew. Energy 2024, 220, 119655. [Google Scholar] [CrossRef]
- Chekroud, Z.; Djerrab, L.; Rouabhia, A.; Dems, M.A.; Atailia, I.; Djazy, F.; Smadi, M.A. Valorisation of date fruits by-products for the production of biopolymer polyhydroxybutyrate (PHB) using the bacterial strain Bacillus paramycoides. Ital. J. Food Sci. 2022, 34, 48–58. [Google Scholar] [CrossRef]
- Razzaq, S.; Shahid, S.; Farooq, R.; Noreen, S.; Perveen, S.; Bilal, M. Sustainable bioconversion of agricultural waste substrates into poly (3-hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428. Biomass Convers. Biorefinery 2022, 14, 9429–9439. [Google Scholar] [CrossRef]
- Kacanski, M.; Knoll, L.; Nussbaumer, M.; Neureiter, M.; Drosg, B. Anaerobic acidification of pressed sugar beet pulp for mcl-polyhydroxyalkanoates fermentation. Process Biochem. 2023, 131, 235–243. [Google Scholar] [CrossRef]
- Montiel-Jarillo, G.; Gea, T.; Artola, A.; Fuentes, J.; Carrera, J.; Suárez-Ojeda, M.E. Towards PHA production from wastes: The bioconversion potential of different activated sludge and food industry wastes into VFAs through acidogenic fermentation. Waste Biomass Valorization 2021, 12, 6861–6873. [Google Scholar] [CrossRef]
- Critelli, P.; Pesante, G.; Lupinelli, S.; Modesti, M.; Zanatta, S.; Battista, F.; Frison, N. Production and characterisation of PHAs by pure culture using protein hydrolysates as sole carbon source. Environ. Technol. Innov. 2022, 28, 102919. [Google Scholar] [CrossRef]
- Verdini, F.; Tabasso, S.; Mariatti, F.; Bosco, F.; Mollea, C.; Calcio Gaudino, E.; Cravotto, G. From agri-food wastes to polyhydroxyalkanoates through a sustainable process. Fermentation 2022, 8, 556. [Google Scholar] [CrossRef]
- Li, Y.; Cao, D.; Li, M.; Li, K.; Xie, C. Advantage of Using Retentate in Polyhydroxybutyrate (PHB) Production from Sugar-cane Juice. Sugar Tech 2022, 24, 1470–1478. [Google Scholar] [CrossRef]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa Bean Shell as Promising Feedstock for the Production of Poly (3-hydroxybutyrate) (PHB). Appl. Sci. 2023, 13, 975. [Google Scholar] [CrossRef]
- Ramos, L.H.; Cisneros-Yupanqui, M.; Santisteban Soto, D.V.; Lante, A.; Favaro, L.; Casella, S.; Basaglia, M. Exploitation of Cocoa Pod Residues for the Production of Antioxidants, Polyhydroxyalkanoates, and Ethanol. Fermentation 2023, 9, 843. [Google Scholar] [CrossRef]
- Carvalheira, M.; Amorim, C.L.; Oliveira, A.C.; Guarda, E.C.; Costa, E.; Ribau Teixeira, M.A.; Castro, P.M.L.; Duque, A.F.; Reis, M.A.M. Valorization of Brewery Waste through Polyhydroxyalkanoates Production Supported by a Metabolic Specialized Microbiome. Life 2022, 12, 1347. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Llimós, J.; Ponsá, S. Integrated Solid-State Enzymatic Hydrolysis and Solid-State Fermentation for Producing Sustainable Polyhydroxyalkanoates from Low-Cost Agro-Industrial Residues. Food Bioprod. Process. 2021, 126, 334–344. [Google Scholar] [CrossRef]
- Sarmiento-Vásquez, Z.; Vandenberghe, L.P.D.S.; Karp, S.G.; Soccol, C.R. Production of Polyhydroxyalkanoates through Soybean Hull and Waste Glycerol Valorization: Subsequent Alkaline Pretreatment and Enzymatic Hydrolysis. Fermentation 2022, 8, 433. [Google Scholar] [CrossRef]
- Israni, N.; Shivakumar, S. Polyhydroxyalkanoate (PHA) Biosynthesis from Directly Valorized Ragi Husk and Sesame Oil Cake by Bacillus megaterium Strain Ti3: Statistical Optimization and Characterization. Int. J. Biol. Macromol. 2020, 148, 20–30. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Gonzalez-Miquel, M.; Winterburn, J. Integrated Biorefining Approach for the Production of Polyhydroxyalkanoates from Enzymatically Hydrolyzed Rice Straw. Bioprocess Biosyst. Eng. 2022, 45, 543–553. [Google Scholar]
- Bacha, S.; Arous, F.; Chouikh, E.; Jaouani, A.; Gtari, M.; Charradi, K.; Attia, H.; Ghorbel, D. Exploring Bacillus amyloliquefaciens strain OM81 for the production of polyhydroxyalkanoate (PHA) bioplastic using olive mill wastewater. 3 Biotech 2023, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Bahadar, A.A.; Vasudevan, N.; Krishnan, S.; Kwon, H.S.; Kim, H.B. Recent Advances on Polyhydroxyalkanoates (PHAs) Biodegradable Polymers: Synthesis, Applications, and Sustainability. Appl. Sci. 2022, 12, 5955. [Google Scholar]
- Tiang, M.F.; Nordin, D.; Abdul, P.M. Effect of Feeding Strategies and Inoculums Applied on Two-Stage Biosynthesis of Polyhydroxyalkanoates from Palm Oil Mill Effluent. J. Polym. Environ. 2020, 28, 1934–1943. [Google Scholar] [CrossRef]
- Rezende, E.G.F.; Oliveira, G.H.D.; Couto, P.T.; Zaiat, M.; Ribeiro, R. Modeling Polyhydroxyalkanoates Production from Sugarcane Vinasse by Mixed Microbial Cultures. J. Water Process Eng. 2023, 53, 103740. [Google Scholar] [CrossRef]
- Saratale, R.G.; Cho, S.K.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Bharagava, R.N.; Varjani, S.; Nair, S.; Kim, D.-S.; Shin, H.-S.; et al. Developing Microbial Co-Culture System for Enhanced Polyhydroxyalkanoates (PHA) Production Using Acid Pretreated Lignocellulosic Biomass. Polymers 2022, 14, 726. [Google Scholar] [CrossRef]
- Schmid, M.T.; Song, H.; Raschbauer, M.; Emerstorfer, F.; Omann, M.; Stelzer, F.; Neureiter, M. Utilization of Desugarized Sugar Beet Molasses for the Production of Poly (3-hydroxybutyrate) by Halophilic Bacillus megaterium uyuni S29. Process Biochem. 2019, 86, 9–15. [Google Scholar] [CrossRef]
- De Souza Hassemer, G.; Colet, R.; de Melo, R.N.; Fischer, B.; Lin, Y.H.; Junges, A.; Valduga, E. Production of Poly(3-hydroxybutyrate) [P(3HB)] from Different Agroindustry Byproducts by Bacillus megaterium. Biointerface Res. Appl. Chem. 2021, 11, 14278–14289. [Google Scholar] [CrossRef]
- Amini, M.; Sobhani, S.; Younesi, H.; Abyar, H.; Salamatinia, B.; Mohammadi, M. Evaluating the Feasibility of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Co-biopolymer Production from Rice Wastewater by Azohydromonas lata. Appl. Food Biotechnol. 2020, 7, 73–83. [Google Scholar] [CrossRef]
- Aremu, M.O.; Ishola, M.M.; Taherzadeh, M.J. Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans. Fermentation 2021, 7, 287. [Google Scholar] [CrossRef]
- Izaguirre, J.K.; da Fonseca, M.M.R.; Castañón, S.; Villarán, M.C.; Cesário, M.T. Giving Credit to Residual Bioresources: From Municipal Solid Waste Hydrolysate and Waste Plum Juice to Poly(3-hydroxybutyrate). Waste Manag. 2020, 118, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Traina, F.; Corsino, S.F.; Capodici, M.; Licitra, E.; Di Bella, G.; Torregrossa, M.; Viviani, G. Combined Recovery of Polyhydroxy-alkanoates and Reclaimed Water in the Mainstream of a WWTP for Agro-food Industrial Wastewater Valorisation by Membrane Bioreactor Technology. J. Environ. Manag. 2024, 351, 119836. [Google Scholar] [CrossRef]
- Tamang, P.; Banerjee, R.; Köster, S.; Nogueira, R. Comparative Study of Polyhydroxyalkanoates Production from Acidified and Anaerobically Treated Brewery Wastewater Using Enriched Mixed Microbial Culture. J. Environ. Sci. 2019, 78, 137–146. [Google Scholar] [CrossRef]
- Guventurk, D.; Ozturk, G.; Ozyildiz, G.; Ayisigi, E.; Guven, D.; Zengin, G.E.; Tas, D.O.; Olmez-Hanci, T.; Pala-Ozkok, I.; Yagci, N.; et al. Determination of the Potential of Pickle Wastewater as Feedstock for Biopolymer Production. Water Sci. Technol. 2020, 81, 21–28. [Google Scholar] [CrossRef]
- Morgan-Sagastume, F.; Bengtsson, S.; De Grazia, G.; Alexandersson, T.; Quadri, L.; Johansson, P.; Magnusson, P.; Werker, A. Mixed-Culture Polyhydroxyalkanoate (PHA) Production Integrated into a Food-Industry Effluent Biological Treatment: A Pilot-Scale Evaluation. J. Environ. Chem. Eng. 2020, 8, 104469. [Google Scholar] [CrossRef]
- Rai, S.K.; Chaturvedi, K.; Yadav, S.K. Evaluation of Structural Integrity and Functionality of Commercial Pectin Based Edible Films Incorporated with Corn Flour, Beetroot, Orange Peel, Muesli and Rice Flour. Food Hydrocoll. 2019, 91, 127–135. [Google Scholar] [CrossRef]
- Siracusa, V.; Romani, S.; Gigli, M.; Mannozzi, M.; Cecchini, C.J.P.; Tylewicz, U.; Lotti, N. Characterization of Active Edible Films Based on Citral Essential Oil, Alginate and Pectin. Materials 2018, 11, 1980. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Q.; Huang, H.; Duan, Y.; Xiao, G.; Le, T. Enhanced Physico-Mechanical, Barrier and Antifungal Properties of Soy Protein Isolate Film by Incorporating Both Plant-Sourced Cinnamaldehyde and Facile Synthesized Zinc Oxide Nanosheets. Colloids Surf. B Biointerfaces 2019, 180, 31–38. [Google Scholar] [CrossRef]
- Verbeek, C.J.R.; Bier, J.M. Synthesis and Characterization of Thermoplastic Agro-Polymers. In Handbook of Applied Biopolymer Technology; RSC Publishing: Cambridge, UK, 2011; pp. 197–242. [Google Scholar]
- Li, Y.; Wang, S.; Zhang, G.; Liu, X.; Liu, H.; He, Y.; Zhu, D. Morphological and Structural Changes in Thermally-Induced Soybean Protein Isolate Xerogels Modulated by Soybean Polysaccharide Concentration. Food Hydrocoll. 2022, 133, 107967. [Google Scholar] [CrossRef]
- Kaynarca, G.B.; Kamer, D.D.A.; Gumus, T.; Sagdıc, O. Characterization of Poly(vinyl alcohol)/Gelatin Films Made with Winery Solid By-Product (Vinasse) Extract. Food Packag. Shelf Life 2023, 35, 101013. [Google Scholar] [CrossRef]
- Su, J.F.; Huang, Z.; Yuan, X.Y.; Wang, X.Y.; Li, M. Structure and Properties of Carboxymethyl Cellulose/Soy Protein Isolate Blend Edible Films Crosslinked by Maillard Reactions. Carbohydr. Polym. 2010, 79, 145–153. [Google Scholar] [CrossRef]
- Ghosh, T.; Katiyar, V. Nanochitosan Functionalized Hydrophobic Starch/Guar Gum Biocomposite for Edible Coating Application with Improved Optical, Thermal, Mechanical, and Surface Property. Int. J. Biol. Macromol. 2022, 211, 116–127. [Google Scholar] [CrossRef]
- Tahsiri, Z.; Mirzaei, H.; Hosseini, S.M.H.; Khalesi, M. Gum Arabic Improves the Mechanical Properties of Wild Almond Protein Film. Carbohydr. Polym. 2019, 222, 114994. [Google Scholar] [CrossRef]
- Li, C.; Zhu, W.; Xue, H.; Chen, Z.; Chen, Z.; Wang, X. Physical and Structural Properties of Peanut Protein Isolate-Gum Arabic Films Prepared by Various Glycation Times. Food Hydrocoll. 2015, 43, 322–328. [Google Scholar] [CrossRef]
- Rhim, J.W.; Lee, J.H.; Hong, S.I. Water Resistance and Mechanical Properties of Biopolymer (Alginate and Soy Protein) Coated Paperboards. LWT-Food Sci. Technol. 2006, 39, 806–813. [Google Scholar] [CrossRef]
- Bangyekan, C.; Aht-Ong, D.; Srikulkit, K. Preparation and Properties Evaluation of Chitosan-Coated Cassava Starch Films. Carbohydr. Polym. 2006, 63, 61–71. [Google Scholar] [CrossRef]
- Shi, K.; Kokini, J.L.; Huang, Q. Engineering Zein Films with Controlled Surface Morphology and Hydrophilicity. J. Agric. Food Chem. 2009, 57, 2186–2192. [Google Scholar] [CrossRef]
- Guerrero, P.; Stefani, P.M.; Ruseckaite, R.A.; de la Caba, K. Functional Properties of Films Based on Soy Protein Isolate and Gelatin Processed by Compression Molding. J. Food Eng. 2011, 105, 65–72. [Google Scholar] [CrossRef]
- Kokoszka, S.; Debeaufort, F.; Hambleton, A.; Lenart, A.; Voilley, A. Protein and Glycerol Contents Affect Physico-Chemical Properties of Soy Protein Isolate-Based Edible Films. Innov. Food Sci. Emerg. Technol. 2010, 11, 503–510. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Castro-Mayorga, J.L.; Reis, M.A.; Sammon, C.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived from Fruit Pulp Biowaste. Front. Sustain. Food Syst. 2018, 2, 38. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Reis, M.A.; Carvalheira, M.; Sammon, C.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Development and Characterization of Electrospun Biopapers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived from Cheese Whey with Varying 3-Hydroxyvalerate Contents. Biomacromolecules 2021, 22, 2935–2953. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Lopez, K.J.; Prieto, C.; Pardo-Figuerez, M.; Cabedo, L.; Lagaron, J.M. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. Nanomaterials 2023, 13, 823. [Google Scholar] [CrossRef]
- Moll, E.; González-Martínez, C.; Chiralt, A. Release and Antibacterial Action of Phenolic Acids Incorporated into PHBV Films. Food Packag. Shelf Life 2023, 38, 101112. [Google Scholar] [CrossRef]
- Ferri, M.; Papchenko, K.; Degli Esposti, M.; Tondi, G.; De Angelis, M.G.; Morselli, D.; Fabbri, P. Fully Biobased Polyhydroxyalkanoate/Tannin Films as Multifunctional Materials for Smart Food Packaging Applications. ACS Appl. Mater. Interfaces 2023, 15, 28594–28605. [Google Scholar] [CrossRef] [PubMed]
- Ojha, N.; Das, N. Fabrication and Characterization of Biodegradable PHBV/SiO₂ Nanocomposite for Thermo-Mechanical and Antibacterial Applications in Food Packaging. IET Nanobiotechnol. 2020, 14, 785–795. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R.; Neves, L.A.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Reis, M.A. Preparation and Characterization of Films Based on a Natural p(3HB)/mcl-PHA Blend Obtained Through the Co-Culture of Cupriavidus necator and Pseudomonas citronellolis in Apple Pulp Waste. Bioengineering 2020, 7, 34. [Google Scholar] [CrossRef]
- Salgado, P.R.; D’Amico, D.A.; Seoane, I.T.; Iglesias Montes, M.; Mauri, A.N.; Cyras, V.P. Improvement of Water Barrier Properties of Soybean Protein Isolate Films by Poly(3-hydroxybutyrate) Thin Coating. J. Appl. Polym. Sci. 2021, 138, 49758. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Covas, J.A.; Suárez, M.J.; Angulo, I.; Hilliou, L. Film Blowing of PHB-Based Systems for Home Compostable Food Packaging. Int. Polym. Process. 2020, 35, 440–447. [Google Scholar] [CrossRef]
- Zytner, P.; Pal, A.K.; Wu, F.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. Morphology and Performance Relationship Studies on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(butylene adipate-co-terephthalate)-Based Biodegradable Blends. ACS Omega 2023, 8, 1946–1956. [Google Scholar] [CrossRef] [PubMed]
- Semeniuk, V.; Kochubei, V.; Karpenko, E.; Melnyk, Y.; Skorokhoda, V.; Semenyuk, N. Thermal and Physico-Mechanical Properties of Biodegradable Materials Based on Polyhydroxyalkanoates. Polimery 2022, 67, 561–566. [Google Scholar] [CrossRef]
- Pouriman, H.; Graham, K.; Jayaraman, K. Monolayer Films from Poly(Lactic Acid) (PLA)/Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) Blends for Food Packaging Applications. Express Polym. Lett. 2023, 17, 1007–1018. [Google Scholar] [CrossRef]
- Zheng, H.; Tang, H.; Yang, C.; Chen, J.; Wang, L.; Dong, Q.; Shi, W.; Li, L.; Liu, Y. Evaluation of the Slow-Release Polylactic Acid/Polyhydroxyalkanoates Active Film Containing Oregano Essential Oil on the Quality and Flavor of Chilled Pufferfish (Takifugu obscurus) Fillets. Food Chem. 2022, 385, 132693. [Google Scholar] [CrossRef] [PubMed]
- Cappiello, G.; Aversa, C.; Barletta, M.; Gisario, A. Progress in Design and Processing of Polyhydroxyalkanoates (PHAs): Home Compostable Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)/Polybutylene Succinate-co-Adipate (PBSA) Blend. J. Appl. Polym. Sci. 2023, 140, e53933. [Google Scholar] [CrossRef]
- Le Delliou, B.; Vitrac, O.; Castro, M.; Bruzaud, S.; Domenek, S. Characterization of a New Bio-Based and Biodegradable Blend of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(Butylene-co-Succinate-co-Adipate). J. Appl. Polym. Sci. 2022, 139, 52124. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Corrado, I.; Di Girolamo, R.; Poggetto, G.D.; Panzella, L.; Borselleca, E.; Pezzella, C.; Giosafatto, C.V.L. Manufacture of Active Multilayer Films Made of Functionalized Pectin Coated by Polyhydroxyalkanoates: A Fully Renewable Approach to Active Food Packaging. Polymers 2023, 281, 126136. [Google Scholar] [CrossRef]
- Akinalan Balik, B.; Argin, S.; Lagaron, J.M.; Torres-Giner, S. Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Appl. Sci. 2019, 9, 5136. [Google Scholar] [CrossRef]
- Genovesi, C.; Aversa, M.; Barletta, M. Polyhydroxyalkanoates-Based Cast Film as Bio-Based Packaging for Fresh Fruit and Vegetables: Manufacturing and Characterization. J. Polym. Environ. 2023, 31, 14522–14532. [Google Scholar] [CrossRef]
- Meléndez-Rodríguez, S.; Torres-Giner, M.A.; Reis, M.A.; Silva, F.; Matos, M.; Cabedo, L.; Lagarón, J.M. Blends of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers 2021, 13, 1155. [Google Scholar] [CrossRef]
- Pérez-Arauz, A.O.; Aguilar-Rabiela, A.E.; Vargas-Torres, A.; Rodríguez-Hernández, A.I.; Chavarría-Hernández, N.; Vergara-Porras, B.; López-Cuellar, M.R. Production and Characterization of Biodegradable Films of a Novel Polyhydroxy-alkanoate (PHA) Synthesized from Peanut Oil. Food Packag. Shelf Life 2019, 20, 100297. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R.; Freitas, F.; Neves, L.A.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Production of Medium-Chain Length Polyhydroxyalkanoates by Pseudomonas citronellolis Grown in Apple Pulp Waste. Appl. Food Biotechnol. 2019, 6, 71–82. [Google Scholar] [CrossRef]
- Nabels-Sneiders, M.; Platnieks, O.; Grase, L.; Gaidukovs, S. Lamination of Cast Hemp Paper with Bio-Based Plastics for Sustainable Packaging: Structure-Thermomechanical Properties Relationship and Biodegradation Studies. J. Compos. Sci. 2022, 6, 246. [Google Scholar] [CrossRef]
- Soares da Silva, F.A.G.; Matos, M.; Dourado, F.; Reis, M.A.; Branco, P.; Poças, F.; Gama, M. Development of a Layered Bacterial Nanocellulose-PHBV Composite for Food Packaging. J. Sci. Food Agric. 2023, 103, 1077–1087. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Cabedo, L.; Lagaron, J.M.; Torres-Giner, S. Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Front. Nutr. 2020, 7, 140. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste-Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrafine Fibers. Nanomaterials 2019, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials 2019, 9, 227. [Google Scholar] [CrossRef]
- Ibrahim, M.I.; Alsafadi, D.; Alamry, K.A.; Oves, M.; Alosaimi, A.M.; Hussein, M.A. A Promising Antimicrobial Bionanocomposite Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Reinforced with Silver-Doped Zinc Oxide Nanoparticles. Sci. Rep. 2022, 12, 14299. [Google Scholar] [CrossRef]
- Bruni, G.P.; de Oliveira, J.P.; Gómez-Mascaraque, L.G.; Fabra, M.J.; Martins, V.G.; da Rosa Zavareze, E.; López-Rubio, A. Electrospun β-Carotene-Loaded SPI:PVA Fiber Mats Produced by Emulsion-Electrospinning as Bioactive Coatings for Food Packaging. Food Packag. Shelf Life 2020, 23, 100426. [Google Scholar] [CrossRef]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked Electrospun Zein-Based Food Packaging Coatings Containing Bioactive Chilto Fruit Extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- Plouzeau, M.; Belyamani, I.; Fatyeyeva, K.; Marais, S.; Kobzar, Y.; Cauret, L. Recyclability of Poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBH) for Food Packaging Applications. Food Packag. Shelf Life 2023, 40, 101170. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Marconi, E.; Lorini, L.; Valentino, F.; Silva, F.; Ferreira, B.S.; Majone, M. Elemental Concentration and Migratability in Bioplastics Derived from Organic Waste. Chemosphere 2020, 259, 127472. [Google Scholar] [CrossRef]
- Khatun, B.; Das, J.; Rizwana, S.; Maji, T.K. Biodegradable Polymers—A Greener Approach for Food Packaging. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 317–369. [Google Scholar] [CrossRef]
- Butchosa, N.; Brown, C.; Larsson, P.T.; Berglund, L.A.; Bulone, V.; Zhou, Q. Nanocomposites of Bacterial Cellulose Nano-Fibers and Chitin Nanocrystals: Fabrication, Characterization and Bactericidal Activity. Green Chem. 2013, 15, 3404–3413. [Google Scholar] [CrossRef]
- Vostrejs, P.; Adamcová, D.; Vaverková, M.D.; Enev, V.; Kalina, M.; Machovsky, M.; Kovalcik, A. Active Biodegradable Packaging Films Modified with Grape Seeds Lignin. RSC Adv. 2020, 10, 29202–29213. [Google Scholar] [CrossRef] [PubMed]
- Mirpoor, S.F.; Patanè, G.T.; Corrado, I.; Giosafatto, C.V.L.; Ginestra, G.; Nostro, A.; Pezzella, C. Functionalization of Poly-hydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. Int. J. Mol. Sci. 2023, 24, 11628. [Google Scholar] [CrossRef]
- Gigante, V.; Seggiani, M.; Cinelli, P.; Signori, F.; Vania, A.; Navarini, L.; Lazzeri, A. Utilization of Coffee Silverskin in the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymer-Based Thermoplastic Biocomposites for Food Contact Applications. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106172. [Google Scholar] [CrossRef]
- Tyagi, P.; Gutierrez, J.N.; Nathani, V.; Lucia, L.A.; Rojas, O.J.; Hubbe, M.A.; Pal, L. Hydrothermal and Mechanically Generated Hemp Hurd Nanofibers for Sustainable Barrier Coatings/Films. Ind. Crops Prod. 2021, 168, 113582. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Li, Y.; Zhu, L.; Fang, Z.; Shi, Q. Physicochemical, Mechanical and Structural Properties of Composite Edible Films Based on Whey Protein Isolate/Psyllium Seed Gum. Int. J. Biol. Macromol. 2020, 153, 892–901. [Google Scholar] [CrossRef]
- Ghazvini, A.K.A.; Ormondroyd, G.; Curling, S.; Saccani, A.; Sisti, L. An Investigation on the Possible Use of Coffee Silverskin in PLA/PBS Composites. J. Appl. Polym. Sci. 2022, 139, 52264. [Google Scholar] [CrossRef]
- Yang, S.; Miao, Q.; Huang, Y.; Jian, P.; Wang, X.; Tu, M. Preparation of Cinnamaldehyde-Loaded Polyhydroxyalkanoate/Chitosan Porous Microspheres with Adjustable Controlled-Release Property and Its Application in Fruit Preservation. Food Packag. Shelf Life 2020, 26, 100596. [Google Scholar] [CrossRef]
- Corrado, I.; Di Girolamo, R.; Regalado-González, C.; Pezzella, C. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers 2022, 14, 166. [Google Scholar] [CrossRef] [PubMed]
Biopolymer | By-Product | Molecular Weight | Chemical Composition | Solubility | Physical Properties | Ref. |
---|---|---|---|---|---|---|
cellulose | teff straw | - | Cellulose (89.9%); Hemicellulose (4.6%); Klason lignin (3.1%); Pectic matters (0.3%); Fatty and waxy matters (0.4%); Aqueous extractives (2.2%); Ash (0.6%) | Insoluble in water, acetone, anhydrous ethanol, and toluene. Soluble in cuprammonium hydroxide ‘Cuam’ solution. | Average diameter (μm) 6.39 ± 2.24 | [22] |
enset fiber | - | Cellulose (95.7%); Hemicellulose (2.3%); Klason lignin (0.7%); Pectic matters (0.3%); Fatty and waxy matters (0.2%); Aqueous extractives (0.3%); Ash (0.7%) | Insoluble in water, acetone, anhydrous ethanol, and toluene. Soluble in cuprammonium hydroxide ‘Cuam’ solution. | Average diameter (μm) 13.37 ± 2.45 | [22] | |
sugarcane bagasse | - | Cellulose (90.8%); Hemicellulose (4.0%); Klason lignin (2.8%); Pectic matters (0.7%); Fatty and waxy matters (0.5%); Aqueous extractives (0.6%); Ash (0.7%) | Insoluble in water, acetone, anhydrous ethanol, and toluene. Soluble in cuprammonium hydroxide ‘Cuam’ solution. | Average diameter (μm) 19.19 ± 5.18 | [22] | |
coffee hull | - | Cellulose (79.9%); Hemicellulose (8.8%); Klason lignin (7.9%); Pectic matters (1.0%); Fatty and waxy matters (0.9%); Aqueous extractives (0.7%); Ash (1.0%) | Insoluble in water, acetone, anhydrous ethanol, and toluene. Soluble in cuprammonium hydroxide ‘Cuam’ solution. | Average diameter (μm) 24.06 ± 7.37 | [22] | |
corncob | - | Degree of polymerization (581) | - | Average diameter (μm) 83.34 Average pore size (nm) 17.95 Crystallinity index (%) 52.82 | [23] | |
date pits | - | - | - | Particle size (µm) 2.5–4 Crystallinity index (%) 80.81 Thermal degradation (°C) 340–345 | [24] | |
cactus fruit waste seeds | - | Cellulose (27%); Lignin (37%); No hemicellulose | - | Needle-like shape Diameter (nm) 13 ± 1.4 Length (nm) 419 ± 22.7 Crystallinity index (%) 86 Zeta (-mV) −30.0 L/D 30.7 Tonset (°C) 273 Tmax (°C) 340 the 5% CNC suspension behaves as a gel-like structure | [25] | |
rice husks | - | Arabinose trace; Galactose trace; Glucose (%) 89.9 ± 14.5; Xylose (%) 10.1 ± 1.7; resistant lignin remained linked to the residual ash fraction | - | Thermal degradation (°C) 330 Crystallinity index (%) 74 | [26] | |
rice straw | - | Arabinose trace; Galactose trace; Glucose (%) 83.3 ± 4.4; Xylose (%) 16.7 ± 1.2 | - | Thermal degradation (°C) 330 Crystallinity index (%) 67 | [26] | |
egagropili | - | - | - | rod-like structure of 65–90 nm | [27] | |
pectin | grapefruit peel | Ash (9.0%); Anhydrouronic acid content (88.10%); Degree of esterification (78.38%); Eq. wt (g/mol) 1650.0; Moisture content (6.82%); Methoxyl content (10.03%); Yield (%) 48.35 | water solubility 80.56%. below pH 4, water solubility is poor as it is high-methoxyl pectin, where an increase in the number of negatively charged free hydroxyl increases the repulsive forces, resulting in weaker gels | Viscosity (mPas) 20.27 Water-holding capacity (g H2O/1 g pectin)10.76 | [28] | |
red pomelo peel | - | 84.13% purity; 50.75% degree of esterification; 7.10% methoxyl content and 79.38% anhydrouronic acid | Soluble in distilled water (800 rpm for 1 h) | - | [29] | |
mango peel | 397–578 kDa | 49.6–55.8% degree of esterification | Nanopure water solubility 77.4–87.4% | Intrinsic Viscosity 44.5–73.7 (mL/g) Emulsion activity 11.8–34.2% Emulsion stability 28.5–94% Water-holding capacity (g H2O/1 g pectin) 9.5–14.9 | [30] | |
starch | potato washing slurries | amylopectin 350 kDa amylose 50 kDa | Amylopectin/amylose ratio 2.3 | gelatinized in distilled water at 95 °C for 30 min with continuous stirring at 300 rpm | Viscosity 612 mPa·s (90 °C). Spherical and ovals granules (15.4–62.7 μm) | [31,32] |
rice flour | Protein 2.0 ± 0.2; Lipids 1.7 ± 0.0; Ashes 1.8 ± 0.2; Xylan 18%; Arabinose/xylose ratio of 1:5 | - | - | [26] | ||
protein | hemp seed oilcake | HP SDS-PAGE profile showed three major bands with molecular masses of ~35 kDa, ~19 kDa, and ~16 kDa, identified as the primary proteins occurring in the hemp protein concentrate. | The main protein content of hemp seeds consists of albumin and edestin, polypeptides with high amounts of arginine, glutamic acid, as well as of sulfur-containing amino acids, which makes their amino acid profiles comparable with those of soybean, egg, and meat proteins | soluble in distilled water (0.1 mg/mL) under constant stirring at pH 12.0 | Zeta potential of aqueous solutions of hemp protein concentrate (72% HPs) is −31 mV (pH 8.0), −24 mV (pH12.0), −17 mV (pH 6.0), −4 mV (pH 5.0). Z-average size is 400–500 nm (pH12.0–8.0), >1000 nm (pH < 7.0) | [33] |
Biopolymer | By-Product | Molecular Weight | Chemical Composition | Solubility | Physical Properties | Ref. |
---|---|---|---|---|---|---|
chitosan | Cicada slough | 3.779 × 104 Da | Ash 0.03% Moisture content 0.18% | 1% aqueous acetic acid at 30 °C 99.3% | Crystallinity index 64.8% Deacetylation degree 84.1% Thermal stability 48% Tgel 35 °C | [51] |
Silkworm chrysalis | 4.090 × 104 Da | Ash 0.05 Moisture content 0.07% | 1% aqueous acetic acid at 30 °C 98.7% | Crystallinity index 32.9% Deacetylation degree 85.5% Thermal stability 45% | [51] | |
Mealworm | 3.975 × 104 Da | Ash 0.50% Moisture content 0.19% | 1% aqueous acetic acid at 30 °C 97.4% | Crystallinity index 51.9% Deacetylation degree 85.9% Thermal stability 39% Tgel 33 °C | [51] | |
Grasshopper | 3.989 × 104 Da | Ash 0.89% Moisture content 1.8% | 1% aqueous acetic acid at 30 °C 94.3% | Crystallinity index 50.1% Deacetylation degree 89.7% Thermal stability 34% Tgel 53 °C | [51] | |
Shrimp shell | 1.620 × 105 Da | Ash 0.90% Moisture content 2.7% | 1% aqueous acetic acid at 30 °C 91.5% | Crystallinity index 49.1% Deacetylation degree 91.2% Thermal stability 27% | [51] | |
gelatine | Half-Smooth Tongue Sole skin | 53–220 kDa | Protein (g/100 g) 89.76 Fat (g/100 g) 0.81 Moisture (g/100 g) 7.52 Ash (g/100 g) 1.37 Amino acid content (185 residues/1.000 residues) | - | Gel strength (g) 221.67 Viscosity (cP) 5.51 | [52] |
Biopolymer | By-Product | Strain | Chemical Composition | Molecular Weight | Physical Properties | Ref. |
---|---|---|---|---|---|---|
bacterial cellulose | Lemon peels | K. hansenii GA2016 | Moisture (% w/w) 7.25 Ash (% w/w) 7.23 | - | Liquid-holding capacity (%(w/w)) in Water 886.00 Acetone 414.40 Dimethyl sulfoxide 904.40 Acetic acid 488.46 Average fiber diameter (nm) 59.98 Crystallinity (%) 88.55 | [59] |
Mandarin peels | K. hansenii GA2016 | Moisture (% w/w) 6.49 Ash (% w/w) 3.31 | - | Liquid-holding capacity (%(w/w)) in Water 791.45 Acetone 307.80 Dimethyl sulfoxide 889.02 Acetic acid 611.01 Average fiber diameter (nm) 66.32 Crystallinity (%) 79.48 | [59] | |
Orange peels | K. hansenii GA2016 | Moisture (% w/w) 7.73 Ash (% w/w) 9.01 | - | Liquid-holding capacity (%(w/w)) in Water 595.76 Acetone 306.97 Dimethyl sulfoxide 574.18 Acetic acid 516.75 Average fiber diameter (nm) 47.92 Crystallinity (%) 91.54 | [59] | |
Grapefruit peels | K. hansenii GA2016 | Moisture (% w/w) 8.06 Ash (% w/w) 4.82 | - | Liquid-holding capacity (%(w/w)) in Water 705.17 Acetone 332.36 Dimethyl sulfoxide 792.84 Acetic acid 513.71 Average fiber diameter (nm) 55.45 Crystallinity (%) 91.96 | [59] | |
Polyhydroxyalkanoates | Orange peels | recombinant Escherichia coli JM109 | PHB | 10 ÷ 3000 kDa | Tg = −6.8 ÷ 6.8 °C Tcc = 92 ÷ 99.3 °C Tm = 167 ÷ 172.6 °C χ = 12.3 ÷ 38.4% | [60] |
Red grape pomace | Cupriavidus necator | PHB | Tg = −3.1 ÷ 4.93 °C Tc = 91 ÷ 102.4 °C Tm = 164.5 ÷ 175.0 °C Td = 279 ÷ 287 °C χ = 31.9 ÷ 46.5% | [61] | ||
Grape pomace and grape seeds | Halomonas halophila, Halomonas organivorans, Cupriavidus necator | PHB | 252.4 ÷ 512.2 kDa | [62] | ||
Date waste | Haloferax mediterranei | PHBV (18 mol%., 3 HV) | 746.0 kDa | Tg = −9 ÷ 17 °C Tm = 148.1 °C χ = 26.5% σb = 10.7 MPa εb = 1% | [63] | |
Avocado seed waste | Cobetia amphilecti | 3-HB, PHB | 1831 kDa | [64] | ||
Apple pomace | Pseudomonas putida | mcl-PHA (3 HD = 60.90 mol%, 3 HO = 23.43 mol%, HDD = 6.94 mol%, HDD(=) = 4.76 mol%, 3 HH = 3.19 mol%, HTD(=) = 0.77 mol%) | 4.7 × 104 kDa | Tg = −42 °C Tm = 47 °C E’ = 360 MPa | [65] | |
Apple pomace and potato peel liquor | Cupriavidus necator | PHBV | Tm = 143.4 °C Td = 253 °C χ = 9.6% | [66] | ||
Banana peels | Zobellellae tiwanensis | PHB | Tm = 169 °C Td = 200 °C χ = 34.38% E = 776.6 MPa σb = 10.3 MPa εb = 1.4% | [67] | ||
Fruit waste | Paraburkholderia sacchari | PHB | 455.8 ÷ 484.4 kDa | Tm = 172.1 ÷ 175.6 °C Tc = 77.1 ÷ 88.5 °C Tcc = 92.2 ÷ 96.2 °C χ = 57.3 ÷ 60.6% E = 827.9 ÷ 1992.7 MPa σb = 13.3 ÷ 28.7 MPa εb = 3.6 ÷ 14.8% | [68] | |
Cassava Peel Waste | Cupriavidus necator | PHB | Tg = −24.2 ÷ −19.3 °C Tm = 69.5 ÷ 109.3 °C | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marotta, A.; Borriello, A.; Khan, M.R.; Cavella, S.; Ambrogi, V.; Torrieri, E. Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products. Polymers 2025, 17, 735. https://doi.org/10.3390/polym17060735
Marotta A, Borriello A, Khan MR, Cavella S, Ambrogi V, Torrieri E. Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products. Polymers. 2025; 17(6):735. https://doi.org/10.3390/polym17060735
Chicago/Turabian StyleMarotta, Angela, Angela Borriello, Muhammad Rehan Khan, Silvana Cavella, Veronica Ambrogi, and Elena Torrieri. 2025. "Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products" Polymers 17, no. 6: 735. https://doi.org/10.3390/polym17060735
APA StyleMarotta, A., Borriello, A., Khan, M. R., Cavella, S., Ambrogi, V., & Torrieri, E. (2025). Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products. Polymers, 17(6), 735. https://doi.org/10.3390/polym17060735