Identification of Aged Polypropylene with Machine Learning and Near–Infrared Spectroscopy for Improved Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PP Samples
2.2. Aging of PP Samples
2.3. NIR Spectral Dataset and Preprocessing
2.4. Linear –SVC Model Architecture and Training
2.5. Sample Characterization
3. Results and Discussion
3.1. Characterization of PP at Different Aging Stages
3.2. NIR Spectral of PP at Different Aging Stages
3.3. Data Preprocessing
3.4. Machine Learning Outcome
3.5. Visualization Results of Model Training with Different Preprocessing Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rebeiz, K.S.; Craft, A.P. Plastic waste management in construction: Technological and institutional issues. Resour. Conserv. Recycl. 1995, 15, 257. [Google Scholar] [CrossRef]
- Hossain, M.T.; Shahid, M.A.; Mahmud, N.; Habib, A.; Rana, M.M.; Khan, S.A.; Hossain, M.D. Research and application of polypropylene: A review. Discov. Nano 2024, 19, 21. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Uematsu, H.; Sakaguchi, T.; Hashimoto, T. Effects of different types of functionalized polypropylenes on the tensile strength of short carbon fiber–reinforced polypropylene composites. Polym. J. 2024, 56, 214. [Google Scholar] [CrossRef]
- Bora, R.R.; Wang, R.; You, F. Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives. ACS Sustain. Chem. Eng. 2020, 8, 16350–16363. [Google Scholar] [CrossRef]
- Bouregba, R.; Bouiadjra, B.A.B.; Bouziane, M.M.; Bellali, M.A.; Salem, M. Effect of Thermal Ageing on the Thermal and Mechanical Properties of Polypropylene and Polypropylene Micro–Composites. J. Polym. Mater. 2024, 41, 15. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 2003, 79, 397. [Google Scholar] [CrossRef]
- Li, X.; Dong, C.; Li, J.; Bin, G.; Zhou, C. Molecular dynamics simulation of aging properties in polymer materials: A review. Polym. Bull. 2024; published online. [Google Scholar] [CrossRef]
- Patel, A.D.; Schyns, Z.O.G.; Franklin, T.W.; Shaver, M.P. Defining quality by quantifying degradation in the mechanical recycling of polyethylene. Nat. Commun. 2024, 15, 8733. [Google Scholar] [CrossRef] [PubMed]
- Procházka, R.; Valíček, J.; Harničárová, M.; Kušnerová, M.; Tozan, H.; Borzan, C.; Kadnár, M.; Palková, Z.; Gálik, R.; Slamová, K. Collection of Plastic Packaging of Various Types: Sorting of Fractions of Plastic Waste Using Both Automated and Manual Modes. IEEE Access 2024, 12, 44244–44261. [Google Scholar] [CrossRef]
- Carrera, B.; Piñol, V.L.; Mata, J.B.; Kim, K. A machine learning based classification models for plastic recycling using different wavelength range spectrums. J. Clean. Prod. 2022, 374, 133883. [Google Scholar] [CrossRef]
- Mesta, D. AI and Robotics in Waste Sorting: Enhancing Recycling Efficiency. Adv. Recycl. Waste Manag. 2024, 9, 2. [Google Scholar]
- Luo, Y.; Liu, Y.; Wei, Q.; Strlič, M. NIR spectroscopy in conjunction with multivariate analysis for non–destructive characterization of Xuan paper. Herit. Sci. 2024, 12, 175. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Yu, L.; Liu, A.; Zhai, D.; Yang, Z.; Yang, Y. Non–destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 334, 125913. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, U.K.; Bhoje Gowd, E.; Bankapur, A.; Kartha, V.B.; Chidangil, S.; Unnikrishnan, V.K. Development of an inter–confirmatory plastic characterization system using spectroscopic techniques for waste management. Waste Manag. 2022, 150, 339–351. [Google Scholar] [CrossRef]
- Anshari, R.; Tsuboi, M.; Sato, H.; Tashiro, K.; Ozaki, Y. Raman and ATR–FTIR unmask crystallinity changes and carboxylate group and vinyl group accumulation in natural weathering polypropylene microplastics. Sci. Rep. 2025, 15, 2518. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Martinez–Hernandez, U.; West, G.; Assaf, T. Low–Cost Recognition of Plastic Waste Using Deep Learning and a Multi–Spectral Near–Infrared Sensor. Sensors 2024, 24, 2821. [Google Scholar] [CrossRef]
- Liu, J.; Osadchy, M.; Ashton, L.; Foster, M.; Solomon, C.J.; Gibson, S.J. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Goel, N.; Sahoo, A.K.; Rani, L. Machine Learning in Polymer Science: Emerging Trends and Future Directions. Macromol. Symp. 2025, 414, 2400101. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Liao, Q.; Xu, Z. Environmentally–friendly technology for rapid on–line recycling of acrylonitrile–butadiene–styrene, polystyrene and polypropylene using near–infrared spectroscopy. J. Clean. Prod. 2019, 213, 838–844. [Google Scholar] [CrossRef]
- Verma, R.K. A study on symmetry of second derivatives with symmetric functions. Int. J. Stat. Appl. Math. 2025, 10, 45–48. [Google Scholar] [CrossRef]
- Bedin, F.C.B.; Faust, M.V.; Guarneri, G.A.; Assmann, T.S.; Lafay, C.B.B.; Soares, L.F.; Dos Santos–Tonial, L.M. NIR associated to PLS and SVM for fast and non–destructive determination of C, N, P, and K contents in poultry litter. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 245, 118834. [Google Scholar] [CrossRef]
- Ho, C.-H.; Lin, C.-J. Large–scale Linear Support Vector Regression. J. Mach. Learn. Res. 2012, 13, 3323–3348. Available online: https://jmlr.csail.mit.edu/papers/v13/ho12a.html (accessed on 20 February 2025).
- Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep Learning––based Text Classification. ACM Comput. Surv. 2022, 54, 62. [Google Scholar] [CrossRef]
- Rainio, O.; Teuho, J.; Klen, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 2024, 14, 6086. Available online: https://www.ncbi.nlm.nih.gov/pubmed/38480847 (accessed on 20 February 2025). [CrossRef] [PubMed]
- GB/T 1040.2-2006; Standardization Administration of China (SAC). Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. Standards Press of China: Beijing, China, 2006.
- Geem, K.M.V. Plastic waste recycling is gaining momentum. Science 2023, 381, 2. [Google Scholar]
- Devasahayam, S.; Singh, R.; Strezov, V. Recycling and Resource Recovery from Polymers. Polymers 2022, 14, 2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, H.; Li, Y.; Williams, R.A.; Peng, R.; Chen, Y.; Liu, X. Predicting components of pulpwood feedstock for different physical forms and tree species using NIR spectroscopy and transfer learning. Cellulose 2023, 31, 551–566. [Google Scholar] [CrossRef]
- Elbakyan, L.; Zaporotskova, I. Polypropylene Modified with Carbon Nanomaterials: Structure, Properties and Application (A Review). Polymers 2025, 17, 517. [Google Scholar] [CrossRef]
- Kroell, N.; Chen, X.; Maghmoumi, A.; Lorenzo, J.; Schlaak, M.; Nordmann, C.; Greiff, K. NIR–MFCO dataset: Near–infrared–based false–color images of post–consumer plastics at different material flow compositions and material flow presentations. Data Brief 2023, 48, 109054. [Google Scholar] [CrossRef]
- Sahini, K.; Nalini, C.N. A review on derivative spectroscopy and its benefits in drug analysis. Int. J. Creat. Res. Thoughts 2020, 8, 1459–1464. [Google Scholar]
- Rinnan, Å.; Berg, F.v.d.; Engelsen, S.B. Review of the most common pre–processing techniques for near–infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Jiang, W. Cellular traffic prediction with machine learning: A survey. Expert Syst. Appl. 2022, 201, 117163. Available online: https://www.sciencedirect.com/science/article/pii/S095741742200553X (accessed on 20 February 2025). [CrossRef]
- Lubongo, C.; Bin Daej, M.A.A.; Alexandridis, P. Recent Developments in Technology for Sorting Plastic for Recycling: The Emergence of Artificial Intelligence and the Rise of the Robots. Recycling 2024, 9, 59. [Google Scholar] [CrossRef]
Aging Time (Days) | Amount of Data (Items) |
---|---|
0 | 324 |
2 | 182 |
10 | 234 |
20 | 294 |
30 | 285 |
40 | 266 |
50 | 189 |
Total | 1774 |
Type | Preprocessing | Classification Method | Accuracy (%) |
---|---|---|---|
unaged | First–order derivative | Linear–SVC | 98 |
2-day | |||
10-day | |||
20-day | |||
30-day | |||
40-day | |||
50-day |
Method | Type | Precision (%) | Recall (%) | F1–Score |
---|---|---|---|---|
First derivative method + Linear–SVC | unaged | 100 | 100 | 1.00 |
2-day | 100 | 100 | 1.00 | |
10-day | 100 | 100 | 1.00 | |
20-day | 98 | 98 | 0.98 | |
30-day | 98 | 98 | 0.98 | |
40-day | 100 | 93 | 0.97 | |
50-day | 91 | 100 | 0.95 |
Type | Preprocessing | Classification Method | Accuracy (%) |
---|---|---|---|
unaged | Second–order derivative | Linear–SVC | 99 |
2-day | |||
10-day | |||
20-day | |||
30-day | |||
40-day | |||
50-day |
Method | Type | Precision (%) | Recall (%) | F1–Score |
---|---|---|---|---|
Second derivative method + Linear–SVC | unaged | 100 | 100 | 1 |
2-day | 100 | 100 | 1 | |
10-day | 100 | 98 | 0.99 | |
20-day | 100 | 98 | 0.99 | |
30-day | 96 | 100 | 0.98 | |
40-day | 100 | 97 | 0.98 | |
50-day | 95 | 100 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Wu, D.; Yang, S.; Cao, C.; Zhou, W.; Qian, Q.; Chen, Q. Identification of Aged Polypropylene with Machine Learning and Near–Infrared Spectroscopy for Improved Recycling. Polymers 2025, 17, 700. https://doi.org/10.3390/polym17050700
Zhu K, Wu D, Yang S, Cao C, Zhou W, Qian Q, Chen Q. Identification of Aged Polypropylene with Machine Learning and Near–Infrared Spectroscopy for Improved Recycling. Polymers. 2025; 17(5):700. https://doi.org/10.3390/polym17050700
Chicago/Turabian StyleZhu, Keyu, Delong Wu, Songwei Yang, Changlin Cao, Weiming Zhou, Qingrong Qian, and Qinghua Chen. 2025. "Identification of Aged Polypropylene with Machine Learning and Near–Infrared Spectroscopy for Improved Recycling" Polymers 17, no. 5: 700. https://doi.org/10.3390/polym17050700
APA StyleZhu, K., Wu, D., Yang, S., Cao, C., Zhou, W., Qian, Q., & Chen, Q. (2025). Identification of Aged Polypropylene with Machine Learning and Near–Infrared Spectroscopy for Improved Recycling. Polymers, 17(5), 700. https://doi.org/10.3390/polym17050700