Post-Consumer Recycled PET: A Comprehensive Review of Food and Beverage Packaging Safety in Brazil
Abstract
1. Introduction
2. Production of Virgin PET
3. Injection and Blow Molding
4. Reverse Logistics
5. Mechanical and Chemical Recycling of PET
6. Legislation and Contaminants of PET-PCR
6.1. Positive List and Migration Limits of Contaminants from Virgin PET and PCR
6.2. Requirements for the Safety of Food Contact Packaging
6.3. Challenge Test of PET-PCR for Food Contact
6.4. Requirements for Notification to ANVISA of Food-Grade PET-PCR Resin and Food-Grade PET-PCR Packaging
- (a)
- Recycling technology with high decontamination efficiency;
- (b)
- Food-grade PET-PCR resin;
- (c)
- Food-grade PET-PCR packaging or precursor article for food-grade PET-PCR packaging.
- (a)
- Technology involved: detailed description of the physical and/or chemical recycling technologies applied to the processing of post-consumer PET and/or industrial waste.
- (b)
- International background: history of the use of these technologies in other countries, highlighting the regulations and practices adopted to ensure the quality of recycled PET.
- (c)
- Technology validation: results of validation tests (such as challenge tests) demonstrating the effectiveness of the technology in removing contaminants, recognized by entities such as the FDA (USA) and EFSA (European Union).
- (d)
- Letters of no objection: documents issued by agencies such as the FDA that attest to the safety of using food-grade PET-PCR resin, validating the technology and ensuring the safety of the recycled material for food contact.
- (a)
- Process flowchart: specification of the equipment and processes used in the manufacture of the packaging or precursor article.
- (b)
- Material specification: details about the PET-PCR resin (supplier and notification to ANVISA), additives, and pigments used.
- (c)
- Type of packaging: statement regarding the type of packaging to be produced and its conditions of use (single-layer, returnable, etc.).
- (d)
- Food specification: details of the foods to be packaged and the percentages of PET-PCR resin, pigments, and additives.
- (e)
- Analysis reports: results of total and specific migration (monomers, acetaldehyde, metals, aromatic amines) and volatile profile.
- (f)
- Notification form: completed according to the ANVISA model.
- (g)
- Sanitary licensing: document from the manufacturer proving compliance with the health authority.
6.5. Non-Intentionally Added Substances (NIASs) in PET-PCR
Origin | Food/Food Simulant | NIAS | Highlights | References |
---|---|---|---|---|
Spain | 3% (m/v) acetic acid solution in water. 10% (v/v) ethanol solution in water. 95% (v/v) ethanol solution in water. | Cyclic and linear oligomers. |
| [77] |
Netherlands | Mineral water. | 2-methyl-1,3-dioxolane, limonene, acetone, butanone, furan, benzene and styrene. |
| [78] |
Denmark | Parmesan cheese, sausages, roast chicken. | Acetophenone, benzophenone, 1-hydroxycyclohexyl-1-phenylketone, acetaldehyde, acetophenone, 2-methyl-1,3-dioxolane, benzene, styrene, hexadecenamide, edodecenamide and oligomers. |
| [79] |
China | Recycled PET flakes with solvent. | Naphthalene-d8, dimethyl terephthalate, diisobutyl thalate, methyl stearate, bis(2-ethylhexyl) phthalate, benzothiazole, dimethyl phthalate, 1,2-diphenoxyethane, 2-hydroxyethylmethyl terephthalate, ethylene terephthalate cyclic dimer, benzene and substituted derivatives. |
| [75] |
Brazil | 3% (m/v) acetic acid solution in water. 10% (v/v) ethanol solution in water. 95% (v/v) ethanol solution in water. | Bis(7-methyloctyl) hexanedioate, 1,2-benzenedicarboxylic acid diisononyl ester, 2,5-bis(5-tert-butyl-2-benzoxazolylthiophene, (Z)-octadec-9-enamide |
| [80] |
7. Future Perspectives for PET-PCR
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okunola, A.A.; Kehinde, I.O.; Oluwaseun, A.; Olufiropo, E.A. Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. J. Toxicol. Risk Assess. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Marangoni Júnior, L.; Coltro, L.; Dantas, F.B.; Vieira, R.P. Research on Food Packaging and Storage. Coatings 2022, 12, 1714. [Google Scholar] [CrossRef]
- Singh, A.K.; Bedi, R.; Kaith, B.S. Composite Materials Based on Recycled Polyethylene Terephthalate and Their Properties–A Comprehensive Review. Compos. B Eng. 2021, 219, 108928. [Google Scholar] [CrossRef]
- Nisticò, R. Polyethylene Terephthalate (PET) in the Packaging Industry. Polym. Test. 2020, 90, 106707. [Google Scholar] [CrossRef]
- Sarda, P.; Hanan, J.C.; Lawrence, J.G.; Allahkarami, M. Sustainability Performance of Polyethylene Terephthalate, Clarifying Challenges and Opportunities. J. Polym. Sci. 2022, 60, 7–31. [Google Scholar] [CrossRef]
- Dombre, C.; Rigou, P.; Wirth, J.; Chalier, P. Aromatic Evolution of Wine Packed in Virgin and Recycled PET Bottles. Food Chem. 2015, 176, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Ajaj, R.; Abu Jadayil, W.; Anver, H.; Aqil, E. A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles. Sustainability 2022, 14, 4583. [Google Scholar] [CrossRef]
- Bharadwaj, C.; Purbey, R.; Bora, D.; Chetia, P.; Maheswari, R.U.; Duarah, R.; Dutta, K.; Sadiku, E.R.; Varaprasad, K.; Jayaramudu, J. A Review on Sustainable PET Recycling: Strategies and Trends. Mater. Today Sustain. 2024, 27, 100936. [Google Scholar] [CrossRef]
- BRASIL. Resolução de Diretoria Colegiada (RDC) N°20, de 26 de Março de 2008; BRASIL: Brasília, Brazil, 2008. [Google Scholar]
- Associação Brasileira da Indústria do PET (ABIPET) Reciclagem de PET Mantém Crescimento Mesmo com os Desafios da Coleta Seletiva. Available online: https://abipet.org.br (accessed on 2 October 2024).
- FDA. Use of Recycled Plastics in Food Packaging (Chemistry Considerations): Guidance for Industry; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Bezeraj, E.; Debrie, S.; Arraez, F.J.; Reyes, P.; Van Steenberge, P.H.M.; D’hooge, D.R.; Edeleva, M. State-of-the-Art of Industrial PET Mechanical Recycling: Technologies, Impact of Contamination and Guidelines for Decision-Making. RSC Sustain. 2025. [Google Scholar] [CrossRef]
- Aigotti, R.; Giannone, N.; Asteggiano, A.; Mecarelli, E.; Dal Bello, F.; Medana, C. Release of Selected Non-Intentionally Added Substances (NIAS) from PET Food Contact Materials: A New Online SPE-UHPLC-MS/MS Multiresidue Method. Separations 2022, 9, 188. [Google Scholar] [CrossRef]
- Ozaki, A.; Kishi, E.; Ooshima, T.; Kakutani, N.; Abe, Y.; Mutsuga, M.; Yamaguchi, Y.; Yamano, T. Determination of Potential Volatile Compounds in Polyethylene Terephthalate (PET) Bottles and Their Short- and Long-Term Migration into Food Simulants and Soft Drink. Food Chem. 2022, 397, 133758. [Google Scholar] [CrossRef] [PubMed]
- Steimel, K.G.; Hwang, R.; Dinh, D.; Donnell, M.T.; More, S.; Fung, E. Evaluation of Chemicals Leached from PET and Recycled PET Containers into Beverages. Rev. Environ. Health 2024, 39, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Schreier, V.N.; Odermatt, A.; Welle, F. Migration Modeling as a Valuable Tool for Exposure Assessment and Risk Characterization of Polyethylene Terephthalate Oligomers. Molecules 2022, 28, 173. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, B.; Kusano, Y.; Cederberg, T.L.; Jensen, L.K.; Granby, K.; Pedersen, G.A. Chemical Characterization of Virgin and Recycled Polyethylene Terephthalate Films Used for Food Contact Applications. Eur. Food Res. Technol. 2024, 250, 533–545. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Lopes, J.A.; Corredig, M. Chemical Testing of Mechanically Recycled Polyethylene Terephthalate for Food Packaging in the European Union. Resour. Conserv. Recycl. 2022, 179, 106096. [Google Scholar] [CrossRef]
- Kwon, E.E.; Lee, J. Polyethylene Terephthalate Production from a Carbon Neutral Resource. J. Clean. Prod. 2024, 469, 143210. [Google Scholar] [CrossRef]
- Kiyataka, P.H.M.; Marangoni Júnior, L.; Brito, A.C.A.; Pallone, J.A.L. Migration of Antimony from Polyethylene Terephthalate Bottles to Mineral Water: Comparison between Test Conditions Proposed by Brazil and the European Union. J. Food Compos. Anal. 2024, 126, 105859. [Google Scholar] [CrossRef]
- Kiyataka, P.H.M.; Dantas, T.B.H.; Brito, A.C.A.; Júnior, L.M.; Pallone, J.A.L. Evaluation of Different Transport and Distribution Conditions on Antimony Migration from PET Bottles to Mineral Water. Food Packag. Shelf Life 2025, 48, 101450. [Google Scholar] [CrossRef]
- Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477. [Google Scholar] [CrossRef]
- Torres, N.; Robin, J.J.; Boutevin, B.; Re, C.E.; Ma, P. Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. Eur. Polym. J. 1999, 36, 2075–2080. [Google Scholar] [CrossRef]
- Weissmann, D. PET Use in Blow Molded Rigid Packaging. In Applied Plastics Engineering Handbook: Processing, Sustainability, Materials, and Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 809–835. ISBN 9780323886673. [Google Scholar]
- Demirel, B. Optimisation of Mould Surface Temperature and Bottle Residence Time in Mould for the Carbonated Soft Drink PET Containers. Polym. Test. 2017, 60, 220–228. [Google Scholar] [CrossRef]
- Dattilo, S.; Gugliuzzo, C.; Mirabella, E.F.; Puglisi, C.; Scamporrino, A.A.; Zampino, D.C.; Samperi, F. Characterization of VOCs and Additives in Italian PET Bottles and Studies on Potential Functional Aldehydes Scavengers. Eur. Food Res. Technol. 2022, 248, 1407–1420. [Google Scholar] [CrossRef]
- Merga, H.H.; Sinha, D.K.; Getachew, A.; Workneh, M.; Rathee, D.S. Multi-Response Optimization of Process Parameters in Stretch Blow Molding of PET Plastic Bottles. J. Inst. Eng. Ser. D 2024. [Google Scholar] [CrossRef]
- Muringayil Joseph, T.; Azat, S.; Ahmadi, Z.; Moini Jazani, O.; Esmaeili, A.; Kianfar, E.; Haponiuk, J.; Thomas, S. Polyethylene Terephthalate (PET) Recycling: A Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100673. [Google Scholar] [CrossRef]
- Beiler, B.C.; de Ignácio, P.S.A.; Pacagnella Júnior, A.C.; Anholon, R.; Rampasso, I.S. Reverse Logistics System Analysis of a Brazilian Beverage Company: An Exploratory Study. J. Clean. Prod. 2020, 274, 122624. [Google Scholar] [CrossRef]
- Sonar, H.; Dey Sarkar, B.; Joshi, P.; Ghag, N.; Choubey, V.; Jagtap, S. Navigating Barriers to Reverse Logistics Adoption in Circular Economy: An Integrated Approach for Sustainable Development. Clean. Logist. Supply Chain. 2024, 12, 100165. [Google Scholar] [CrossRef]
- Farida, Y.; Siswanto, N.; Vanany, I. Reverse Logistics toward a Circular Economy: Consumer Behavioral Intention toward Polyethylene Terephthalate (PET) Recycling in Indonesia. Case Stud. Chem. Environ. Eng. 2024, 10. [Google Scholar] [CrossRef]
- Rebehy, P.C.P.W.; Andrade dos Santos Lima, S.; Novi, J.C.; Salgado, A.P. Reverse Logistics Systems in Brazil: Comparative Study and Interest of Multistakeholders. J. Environ. Manag. 2019, 250, 109223. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.M.; Castro, R.; Gobbo, J.A. PET Containers in Brazil: Opportunities and Challenges of a Logistics Model for Post-Consumer Waste Recycling. Resour. Conserv. Recycl. 2011, 55, 291–299. [Google Scholar] [CrossRef]
- Ferri, G.L.; Chaves, G.d.L.D.; Ribeiro, G.M. Reverse Logistics Network for Municipal Solid Waste Management: The Inclusion of Waste Pickers as a Brazilian Legal Requirement. Waste Manag. 2015, 40, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, P.; Cerqueira-Streit, J.A.; Batista, L.C. Reverse Logistics and the Sectoral Agreement of Packaging Industry in Brazil towards a Transition to Circular Economy. Resour. Conserv. Recycl. 2020, 153, 104541. [Google Scholar] [CrossRef]
- ABIPET as Etapas da Reciclagem. Available online: https://abipet.org.br (accessed on 26 January 2025).
- Hoffmann, J.; Glückler, J. Technology Evolution in Heterogeneous Technological Fields: A Main Path Analysis of Plastic Recycling. J. Clean. Prod. 2024, 468, 143083. [Google Scholar] [CrossRef]
- Soong, Y.-H.V.; Sobkowicz, M.J.; Xie, D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering 2022, 9, 98. [Google Scholar] [CrossRef]
- Suhaimi, N.A.S.; Muhamad, F.; Abd Razak, N.A.; Zeimaran, E. Recycling of Polyethylene Terephthalate Wastes: A Review of Technologies, Routes, and Applications. Polym. Eng. Sci. 2022, 62, 2355–2375. [Google Scholar] [CrossRef]
- Chen, J.; Dul, S.; Lehner, S.; Jovic, M.; Gaan, S.; Heuberger, M.; Hufenus, R.; Gooneie, A. Mechanical Recycling of PET Containing Mixtures of Phosphorus Flame Retardants. J. Mater. Sci. Technol. 2024, 194, 167–179. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E. Plastic Recycling. In Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Elsevier: Amsterdam, The Netherlands, 2023; pp. 497–510. ISBN 9780323855143. [Google Scholar]
- Plastics Recyclers Europe RecyClass-Recyclability Evaluation Protocol for PET Bottles. 2025. Available online: https://recyclass.eu/ (accessed on 26 January 2025).
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, S.M.; Morott, J.T.; Alshetaili, A.S.; Tiwari, R.V.; Majumdar, S.; Repka, M.A. Influence of Degassing on Hot-Melt Extrusion Process. Eur. J. Pharm. Sci. 2015, 80, 43–52. [Google Scholar] [CrossRef]
- Pin, J.-M.; Soltani, I.; Negrier, K.; Lee, P.C. Recyclability of Post-Consumer Polystyrene at Pilot Scale: Comparison of Mechanical and Solvent-Based Recycling Approaches. Polymers 2023, 15, 4714. [Google Scholar] [CrossRef]
- Pachner, S.; Aigner, M.; Miethlinger, J. A Heuristic Method for Modeling the Initial Pressure Drop in Melt Filtration Using Woven Screens in Polymer Recycling. Polym. Eng. Sci. 2019, 59, 1105–1113. [Google Scholar] [CrossRef]
- Paszun, D.; Spychaj, T. Chemical Recycling of Poly(Ethylene Terephthalate). Ind. Eng. Chem. Res. 1997, 36, 1373–1383. [Google Scholar] [CrossRef]
- Babaei, M.; Jalilian, M.; Shahbaz, K. Chemical Recycling of Polyethylene Terephthalate: A Mini-Review. J. Environ. Chem. Eng. 2024, 12, 112507. [Google Scholar] [CrossRef]
- Mohammadi, S.; Enayati, M. Dual Catalytic Activity of Antimony (III) Oxide: The Polymerization Catalyst for Synthesis of Polyethylene Terephthalate Also Catalyze Depolymerization. Polym. Degrad. Stab. 2022, 206, 110180. [Google Scholar] [CrossRef]
- Santomasi, G.; Aquilino, R.; Brouwer, M.; De Gisi, S.; Smeding, I.; Todaro, F.; Notarnicola, M.; Thoden van Velzen, E.U. Strategies to Enhance the Circularity of Non-Bottle PET Packaging Waste Based on a Detailed Material Characterisation. Waste Manag. 2024, 186, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Auras, R.; Vorst, K.; Singh, J. An Exploratory Model for Predicting Post-Consumer Recycled PET Content in PET Sheets. Polym. Test. 2011, 30, 60–68. [Google Scholar] [CrossRef]
- Herbst, H.; Schweiz, B. New Opportunities for PCR by Restabilization. 1995. Available online: https://www.researchgate.net/publication/316715394_New_Opportunities_for_PCR_by_Restabilization (accessed on 26 January 2025).
- Pinter, E.; Welle, F.; Mayrhofer, E.; Pechhacker, A.; Motloch, L.; Lahme, V.; Grant, A.; Tacker, M. Circularity Study on Pet Bottle-to-Bottle Recycling. Sustainability 2021, 13, 7370. [Google Scholar] [CrossRef]
- Liu, W.-C.; Halley, P.J.; Gilbert, R.G. Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules 2010, 43, 2855–2864. [Google Scholar] [CrossRef]
- Cavalcanti, F.N.; Teófilo, E.T.; Rabello, M.S.; Silva, S.M.L. Chain Extension and Degradation during Reactive Processing of PET in the Presence of Triphenyl Phosphite. Polym. Eng. Sci. 2007, 47, 2155–2163. [Google Scholar] [CrossRef]
- Gooneie, A.; Simonetti, P.; Salmeia, K.A.; Gaan, S.; Hufenus, R.; Heuberger, M.P. Enhanced PET Processing with Organophosphorus Additive: Flame Retardant Products with Added-Value for Recycling. Polym. Degrad. Stab. 2019, 160, 218–228. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Berrard, C.; Daoud, N.; Saillard, P.; Peyroux, J.; Vitrac, O. Assessment of Chemical Risks and Circular Economy Implications of Recycled PET in Food Packaging with Functional Barriers. Resour. Environ. Sustain. 2024, 17. [Google Scholar] [CrossRef]
- Martin, E.J.P.; Oliveira, D.S.B.L.; Oliveira, L.S.B.L.; Bezerra, B.S. Life Cycle Comparative Assessment of Pet Bottle Waste Management Options: A Case Study for the City of Bauru, Brazil. Waste Manag. 2021, 119, 226–234. [Google Scholar] [CrossRef] [PubMed]
- BRASIL. Informe Técnico n. 71, de 11 de Fevereiro de 2016; BRASIL: Brasília, Brazil, 2016. [Google Scholar]
- INMETRO. Regulamento Técnico Mercosul Sobre a Lista Positiva de Monômeros e Polímeros Autorizados Para a Elaboração de Embalagens e Equipamentos Plásticos Em Contato Com Alimentos; INMETRO: Brasília, Brazil, 2012. [Google Scholar]
- BRASIL. Resolução No 105, de 19 de Maio de 1999; Estabelece o Regulamento Técnico Sobre a Utilização de Materiais e Objetos Plásticos que Entrem em Contato com Alimentos; BRASIL: Brasília, Brazil, 1999. [Google Scholar]
- Brazil RDC No. 52, of November 23, 2010, Regulates the Use of Dyes in Plastic Packaging and Equipment Intended to Be in Contact with Food; National Health Surveillance Agency-ANVISA: Brasília, Brazil, 2010.
- Brazil Resolution RDC n 326 from 3 December 2019. Establishes the Positive List of Additives Intended for the Production of Plastic Materials and Polymeric Coatings in Contact with Food and Other Provisions; BRASIL: Brasília, Brazil, 2019.
- Brazil Resolution RDC n 589 from 20 December 2021. Provides for Migration on Materials, Packaging and Plastic Equipment Intended to Come into Contact with Food; National Health Surveillance Agency-ANVISA: Brasília, Brazil, 2021.
- Paulo, H.M.; Marisa Padula, K. Requisitos Para Notificação Na Anvisa de Resina de PET-PCR Grau Alimentício e Embalagens de PET-PCR Grau Alimentício. Informativo 2024, 36. [Google Scholar]
- Resolução de Diretoria Colegiada (RDC) N°51, de 26 de Novembro de 2010; BRASIL: Brasília, Brazil, 2010.
- Palkopoulou, S.; Joly, C.; Feigenbaum, A.; Papaspyrides, C.D.; Dole, P. Critical Review on Challenge Tests to Demonstrate Decontamination of Polyolefins Intended for Food Contact Applications. Trends Food Sci. Technol. 2016, 49, 110–120. [Google Scholar] [CrossRef]
- BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC n° 843, de 22 de Fevereiro de 2024. In Regularização de Alimentos e Embalagens Sob Competência Do Sistema Nacional de Vigilância Sanitária (SNVS) Destinados à Oferta No Território Nacional; BRASIL: Brasília, Brazil, 2024. [Google Scholar]
- BRASIL. Agência Nacional de Vigilância Sanitária. Instrução Normativa-IN n° 281, de 22 de Fevereiro de 2024. In Estabelece a Forma de Regularização Das Diferentes Categorias de Alimentos e Embalagens, e a Respectiva Documentação Que Deve Ser Apresentada; BRASIL: Brasília, Brazil, 2024. [Google Scholar]
- Lambré, C.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Mengelers, M.; Mortensen, A.; et al. Scientific Guidance on the Criteria for the Evaluation and on the Preparation of Applications for the Safety Assessment of Post-consumer Mechanical PET Recycling Processes Intended to Be Used for Manufacture of Materials and Articles in Contact with Food. EFSA J. 2024, 22, e8879. [Google Scholar] [CrossRef]
- Horodytska, O.; Cabanes, A.; Fullana, A. Non-Intentionally Added Substances (NIAS) in Recycled Plastics. Chemosphere 2020, 251, 126373. [Google Scholar] [CrossRef]
- Undas, A.K.; Groenen, M.; Peters, R.J.B.; van Leeuwen, S.P.J. Safety of Recycled Plastics and Textiles: Review on the Detection, Identification and Safety Assessment of Contaminants. Chemosphere 2023, 312, 137175. [Google Scholar] [CrossRef]
- Etxabide, A.; Young, B.; Bremer, P.J.; Kilmartin, P.A. Non-Permanent Primary Food Packaging Materials Assessment: Identification, Migration, Toxicity, and Consumption of Substances. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4130–4145. [Google Scholar] [CrossRef]
- Yi, L.; Miao, H.; Shi, Y.; Zhu, L.; Zhang, H.; Wu, Y.; Huang, Y. Novel Selection of Recycled PET Surrogates Based on Non-Targeted Screening of Non-Intentionally Added Substances and Chemometrics. Microchem. J. 2024, 206, 111469. [Google Scholar] [CrossRef]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, S.; Aznar, M.; Nerín, C. Determination of Oligomers in Virgin and Recycled Polyethylene Terephthalate (PET) Samples by UPLC-MS-QTOF. Anal. Bioanal. Chem. 2018, 410, 2377–2384. [Google Scholar] [CrossRef]
- Thoden van Velzen, E.U.; Brouwer, M.T.; Stärker, C.; Welle, F. Effect of Recycled Content and RPET Quality on the Properties of PET Bottles, Part II: Migration. Packag. Technol. Sci. 2020, 33, 359–371. [Google Scholar] [CrossRef]
- Colombo, G.; Corredig, M.; Uysal Ünalan, I.; Tsochatzis, E. Untargeted Screening of NIAS and Cyclic Oligomers Migrating from Virgin and Recycled Polyethylene Terephthalate (PET) Food Trays. Food Packag. Shelf Life 2024, 41, 101227. [Google Scholar] [CrossRef]
- Dutra, C.; Freire, M.T.D.A.; Nerín, C.; Bentayeb, K.; Rodriguez-Lafuente, A.; Aznar, M.; Reyes, F.G.R. Migration of Residual Nonvolatile and Inorganic Compounds from Recycled Post-Consumer PET and HDPE. J. Braz. Chem. Soc. 2014. [Google Scholar] [CrossRef]
- Saxena, S. Pyrolysis and beyond: Sustainable Valorization of Plastic Waste. Appl. Energy Combust. Sci. 2025, 21, 100311. [Google Scholar] [CrossRef]
- Li, H.; Aguirre-Villegas, H.A.; Allen, R.D.; Bai, X.; Benson, C.H.; Beckham, G.T.; Bradshaw, S.L.; Brown, J.L.; Brown, R.C.; Cecon, V.S.; et al. Expanding Plastics Recycling Technologies: Chemical Aspects, Technology Status and Challenges. Green Chem. 2022, 24, 8899–9002. [Google Scholar] [CrossRef]
Substance | Restriction or Specification |
---|---|
Terephthalic acid | SML = 7.5 mg/kg (expressed as terephthalic acid) |
Isophthalic acid | SML = 5 mg/kg (expressed as isophthalic acid) |
Dimethyl isophthalate | SML = 0.05 mg/kg |
Mono- and diethylene glycol | SML = 30 mg/kg |
Acetaldehyde | SML = 6 mg/kg |
Food Classification |
---|
Non-acidic aqueous foods (pH > 4.5) |
Acidic aqueous foods (pH < 4.5) |
Fatty foods (containing fat or oils among their components |
Alcoholic foods (alcohol content greater than 5% (v/v)) Dry food |
Food Classification | Food Simulant |
---|---|
Only non-acidic aqueous foods | A |
Only acidic aqueous foods | B |
Only alcoholic foods | C |
Only fatty foods | D or D’ |
Non-acidic and alcoholic aqueous foods | C |
Acidic and alcoholic aqueous foods | B and C |
Non-acidic aqueous foods containing fats and oils | A and D or D’ |
Acidic aqueous foods containing fats and oils | B and D or D’ |
Non-acidic, alcoholic and fatty aqueous foods | C and D or D’ |
Acidic, alcoholic and fatty aqueous foods | B, C and D or D’ |
Non-fatty dry foods | No migration test required |
Fatty dry foods | D or D’ |
Characteristic | Substance |
---|---|
Volatile and polar | Chloroform Chlorobenzene 1,1,1-Trichloroethane Diethyl ketone |
Volatile and non-polar | Toluene |
Heavy metal | Copper (II) 2-ethyl hexanoate |
Non-volatile and polar | Benzophenone Methyl salicylate |
Non-volatile and non-polar | Tetracosane Lindane Methyl stearate Phenyl cyclohexane 1-Phenyldecane 2,4,6-Trichloroanisole |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcelino, C.S.; Gomes, V.E.d.S.; Marangoni Júnior, L. Post-Consumer Recycled PET: A Comprehensive Review of Food and Beverage Packaging Safety in Brazil. Polymers 2025, 17, 594. https://doi.org/10.3390/polym17050594
Marcelino CS, Gomes VEdS, Marangoni Júnior L. Post-Consumer Recycled PET: A Comprehensive Review of Food and Beverage Packaging Safety in Brazil. Polymers. 2025; 17(5):594. https://doi.org/10.3390/polym17050594
Chicago/Turabian StyleMarcelino, Carolina Soares, Vitor Emanuel de Souza Gomes, and Luís Marangoni Júnior. 2025. "Post-Consumer Recycled PET: A Comprehensive Review of Food and Beverage Packaging Safety in Brazil" Polymers 17, no. 5: 594. https://doi.org/10.3390/polym17050594
APA StyleMarcelino, C. S., Gomes, V. E. d. S., & Marangoni Júnior, L. (2025). Post-Consumer Recycled PET: A Comprehensive Review of Food and Beverage Packaging Safety in Brazil. Polymers, 17(5), 594. https://doi.org/10.3390/polym17050594