Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing
Abstract
1. Introduction
2. Materials and Methods
2.1. Groups and Specimens Preparation
2.2. 3D Printing Setting
2.3. Conventional Milled Resin
2.4. Three-Point Bending Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joo, H.S.; Park, S.W.; Yun, K.D.; Lim, H.P. Complete-mouth rehabilitation using a 3D printing technique and the CAD/CAM double scanning method: A clinical report. J. Prosthet. Dent. 2016, 116, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Fiamengui, L.M.S.P.; Mendonca, L.M.; Pegoraro, L.F. Fundamentos de Protese Fixa; Artes Médicas: São Paulo, Brazil, 2014; pp. 72–87. [Google Scholar]
- Jeong, Y.G.; Lee, W.S.; Lee, K.B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J. Adv. Prosthodont. 2018, 10, 245–251. [Google Scholar] [CrossRef]
- Chilvarquer, I.; Neto, E.F.D.; Silva, R.L.B.; Lipiec, M.; Hayek, J.E. Escaneamento intraoral: Mudança de paradigma na Odontologia contemporânea. Protese News 2017, 4, 526–529. [Google Scholar]
- De Luca, J.U.; De Luca, S.; De Luca, P.G. Uso do scanner intraoral na prática clínica. Protese News 2017, 4, 546–552. [Google Scholar]
- Peñate, L.; Basilio, J.; Roig, M.; Mercadé, M. Comparative study of interim materials for direct fixed dental prostheses and their fabrication with CAD/CAM technique. J. Prosthet. Dent. 2015, 114, 248–253. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.; Wismeijer, D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef]
- Costa, F.; Saavedra, G. Tecnologia CAD/CAM na prótese dentaria. Protese News 2017, 4, 532–536. [Google Scholar]
- Patil, M.; Kambale, S.; Patil, A.; Mujawar, K. Digitalization in dentistry: CAD/CAM—A Review. Acta Sci. Dent. Sci. 2018, 2, 12–16. [Google Scholar]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Mesquita, A.M.M.; Kojima, N.A.; Neto, J.B.; Aihara, H. The use of 3D printing process on dental prosthodontics. Protese News 2015, 2, 14–24. [Google Scholar]
- Park, S.M.; Kim, S.K.; Heo, S.J.; Koak, J.Y. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials 2020, 13, 3970. [Google Scholar] [CrossRef] [PubMed]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Tariq, A.; Hossain, M.; Umer, R. 3D printing of stimuli-responsive hydrogel materials: Literature review and emerging applications. Giant 2024, 17, 100209. [Google Scholar] [CrossRef]
- Ahmed, K.E. We’re Going Digital: The Current State of CAD/CAM Dentistry in Prosthodontics. Prim. Dent. J. 2018, 7, 30–35. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD/CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 107, 34–36. [Google Scholar] [CrossRef]
- Janeva, N.M.; Kovacevska, G.; Elencevski, S.; Panchevska, S.; Mijoska, A.; Lazarevska, B. Advantages of CAD/CAM versus Conventional Complete Dentures—A Review. Open Access Maced. J. Med. Sci. 2018, 6, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- ISO 10477:2020; Dentistry—Polymer-Based Crown and Veneering Materials. ISO: Geneva, Switzerland, 2020.
- Väyrynen, V.O.; Tanner, J.; Vallittu, P.K. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J. Prosthet. Dent. 2016, 116, 811–817. [Google Scholar] [CrossRef]
- Ligon, S.C.; Husar, B.; Wutzel, H.; Holman, R.; Liska, R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev. 2013, 114, 557–589. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.E.; Kim, Y.L.; Kong, H.J.; Chang, H.S.; Jung, J.H. Marginal and internal fit of 3D printed provisional crowns according to build directions. J. Adv. Prosthodont. 2020, 12, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Kim, J.E.; Jeong, S.H.; Choi, Y.J.; Ryu, J.J. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J. Prosthet. Dent. 2020, 124, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing workflow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Kessler, A.; Reymus, M.; Hickel, R.; Kunzelmann, K.H. Three-body wear of 3D printed temporary materials. Dent. Mater. 2019, 35, 1805–1812. [Google Scholar] [CrossRef]
Group | Material | Impression Angulation |
---|---|---|
Control | PMMA, Duralay color 81—Reliance Dental MGF Co., Ltd., Itasca, IL, USA | - |
P0 | COSMOS TEMP, color A1, Yller | 0 degree |
P45 | COSMOS TEMP, color A1, Yller | 45 degrees |
P90 | COSMOS TEMP, color A1, Yller | 90 degrees |
Groups | Flexural Strength (MPa) | Flexural Modulus (MPa) |
---|---|---|
Control | 78.13 ± 7.94 a | 2.80 ± 2.77 a |
P0 | 80.90 ± 4.0 ab | 2.52 ± 2.44 ab |
P45 | 90.10 ± 8.45 b | 2.85 ± 2.70 b |
P90 | 114.71 ± 7.61 c | 3.74 ± 3.64 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiahara, F.H.; Pizi, E.C.G.; Straioto, F.G.; Galvani, L.D.; Kuga, M.C.; Arrué, T.A.; Junior, A.R.; Só, M.V.R.; Pereira, J.R.; Vidotti, H. Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing. Polymers 2025, 17, 265. https://doi.org/10.3390/polym17030265
Kaiahara FH, Pizi ECG, Straioto FG, Galvani LD, Kuga MC, Arrué TA, Junior AR, Só MVR, Pereira JR, Vidotti H. Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing. Polymers. 2025; 17(3):265. https://doi.org/10.3390/polym17030265
Chicago/Turabian StyleKaiahara, Fábio Hideo, Eliane Cristina Gava Pizi, Fabiana Gouveia Straioto, Lucas David Galvani, Milton Carlos Kuga, Thalita Ayres Arrué, Ageu Raupp Junior, Marcus Vinícius Reis Só, Jefferson Ricardo Pereira, and Hugo Vidotti. 2025. "Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing" Polymers 17, no. 3: 265. https://doi.org/10.3390/polym17030265
APA StyleKaiahara, F. H., Pizi, E. C. G., Straioto, F. G., Galvani, L. D., Kuga, M. C., Arrué, T. A., Junior, A. R., Só, M. V. R., Pereira, J. R., & Vidotti, H. (2025). Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing. Polymers, 17(3), 265. https://doi.org/10.3390/polym17030265