Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Specimen Preparation
2.2. Measurement of Coefficient of Restitution (COR)
2.3. Vibration Damping
2.4. Mechanical Testing and User-Based Performance Evaluation
3. Results and Discussion
3.1. Morphological Analysis of Nanofiller Dispersion in CFRPs
3.2. Rebound Test (Coefficient of Restitution)
3.3. Enhanced Vibration Damping in CFRP: Effects of CNT and GO Nanofillers
3.4. Mechanical Property and User-Based Performance Evaluation
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Association, N.P.G. Nippon Park Golf Association. Available online: https://www.parkgolf.or.jp/english/ (accessed on 22 November 2024).
- Kiel, J.K.K. Golfers Elbow. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519000/ (accessed on 22 November 2024).
- Jee, Y.-S.; Lee, H.-J. Golf and Injury Incidence in Recreational Golfers: A Retrospective Study. J. Converg. Inf. Technol. 2013, 8, 522–528. [Google Scholar]
- Murray, A.; Daines, L.; Archibald, D.; Hawkes, R.; Schiphorst, C.; Kelly, P.; Grant, L.; Mutrie, N. The relationships between golf and health: A scoping review. Br. J. Sports Med. 2016, 51, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thomas, Z.; Wilk, K. The Golfer’s Fore, Fore +, and Advanced Fore + Exercise Program: An Exercise Series and Injury Prevention Program for the Golfer. Int. J. Sports Phys. Ther. 2023, V18, 74973. [Google Scholar] [CrossRef]
- Duc, F.; Bourban, P.E.; Plummer, C.J.G.; Månson, J.A.E. Damping of thermoset and thermoplastic flax fibre composites. Compos. Part A Appl. Sci. Manuf. 2014, 64, 115–123. [Google Scholar] [CrossRef]
- Pereira, A.C.d.N.; Titotto, S. Bioinspired composites: Nature’s guidance for advanced materials future. Funct. Compos. Struct. 2023, 5, 012004. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Enhanced vibration damping and dynamic mechanical characteristics of composites with novel pseudo-thermoset matrix system. Compos. Struct. 2017, 179, 502–513. [Google Scholar] [CrossRef]
- Ma, Q.; Merzuki, M.N.M.; Rejab, M.R.M.; Sani, M.S.M.; Zhang, B. A review of the dynamic analysis and free vibration analysis on fiber metal laminates (FMLs). Funct. Compos. Struct. 2023, 5, 012003. [Google Scholar] [CrossRef]
- Shaid Sujon, M.A.; Islam, A.; Nadimpalli, V.K. Damping and sound absorption properties of polymer matrix composites: A review. Polym. Test. 2021, 104, 107388. [Google Scholar] [CrossRef]
- Kim, B.; Youn, B.; Song, Y.; Lee, D. Enhanced dispersion stability and interfacial damping of POSS-functionalized graphene oxide in PDMS nanocomposites. Funct. Compos. Struct. 2022, 4, 035009. [Google Scholar] [CrossRef]
- Pan, S.; Dai, Q.; Safaei, B.; Qin, Z.; Chu, F. Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams. Thin-Walled Struct. 2021, 166, 108127. [Google Scholar] [CrossRef]
- Pan, S.; Feng, J.; Safaei, B.; Qin, Z.; Chu, F.; Hui, D. A comparative experimental study on damping properties of epoxy nanocomposite beams reinforced with carbon nanotubes and graphene nanoplatelets. Nanotechnol. Rev. 2022, 11, 1658–1669. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, F.; Peng, X.; Scarpa, F.; Huang, Z.; Tao, G.; Liu, H.-Y.; Zhou, H.; Zhou, H. Improving the damping properties of carbon fiber reinforced polymer composites by interfacial sliding of oriented multilayer graphene oxide. Compos. Sci. Technol. 2022, 224, 109309. [Google Scholar] [CrossRef]
- Kim, J.J.; Brown, A.D.; Bakis, C.E.; Smith, E.C. Hybrid carbon nanotube—Carbon fiber composites for high damping. Compos. Sci. Technol. 2021, 207, 108712. [Google Scholar] [CrossRef]
- Feng, J.; Safaei, B.; Qin, Z.; Chu, F. Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Compos. Sci. Technol. 2023, 233, 109925. [Google Scholar] [CrossRef]
- Chandramohan, S.; Vaithiyanathan, M.; Chakraborty, B.C.; Dharmaraj, M.M. Synergistic effect of graphene and carbon black on the mechanical and vibration damping characteristics of styrene-butadiene rubber. Iran. Polym. J. 2024, 34, 17–27. [Google Scholar] [CrossRef]
- Nur Ainin, F.; Azaman, M.D.; Abdul Majid, M.S.; Ridzuan, M.J.M. Investigating the low-velocity impact behaviour of sandwich composite structures with 3D-printed hexagonal honeycomb core—A review. Funct. Compos. Struct. 2023, 5, 012001. [Google Scholar] [CrossRef]
- Mulla, M.H.; Norizan, M.N.; Abdullah, C.K.; Mohd Rawi, N.F.; Mohamad Kassim, M.H.; Abdullah, N.; Faiz Norrrahim, M.N.; Manzoore Elahi, M.S. Low velocity impact performance of natural fibre reinforced polymer composites: A review. Funct. Compos. Struct. 2023, 5, 035004. [Google Scholar] [CrossRef]
- Cucuzza, R.; Domaneschi, M.; Camata, G.; Marano, G.C.; Formisano, A.; Brigante, D. FRCM retrofitting techniques for masonry walls: A literature review and some laboratory tests. Procedia Struct. Integr. 2023, 44, 2190–2197. [Google Scholar] [CrossRef]
- Sharhan, Z.S.; Cucuzza, R.; Domaneschi, M.; Ghodousian, O.; Movahedi Rad, M. Reinforcement of RC Two-Way Slabs with CFRP Laminates: Plastic Limit Method for Carbon Emissions and Deformation Control. Buildings 2024, 14, 3873. [Google Scholar] [CrossRef]
- ASTM. F1887–14; Standard Test Method for Measuring the Coefficient of Restitution (COR) of Baseballs and Softballs. ASTM: West Conshohocken, PA, USA, 2019. [CrossRef]
- Newton, I. Philosophiae Naturalis Principia Mathematica; Royal Society Publishing: London, UK, 1686. [Google Scholar]
- Tabor, D.; Taylor, G.I. A simple theory of static and dynamic hardness. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1948, 192, 247–274. [Google Scholar] [CrossRef]
- Weir, G.; McGavin, P. The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane. Proc. R. Soc. A Math. Phys. Eng. Sci. 2008, 464, 1295–1307. [Google Scholar] [CrossRef]
- ASTM. E976-15; Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. ASTM: West Conshohocken, PA, USA, 2015. [CrossRef]
- ASTM. D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM: West Conshohocken, PA, USA, 2017. [CrossRef]
- United States Golf Association. TPX3009, Protocol for Measuring the Coefficient of Restitution of a Clubhead Relative to a Baseline Plate. 2019, TPX3009. Available online: https://www.usga.org/content/dam/usga/pdf/2019/equipment-standards/TPX3009%20Protocol%20for%20Measuring%20the%20Coefficient%20of%20Restitution%20of%20a%20Clubhead%20Relative%20to%20a%20Baseline%20Plate.pdf (accessed on 18 January 2025).
- Hunt, K.H.; Crossley, F.R.E. Coefficient of Restitution Interpreted as Damping in Vibroimpact. J. Appl. Mech. 1975, 42, 440–445. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Shi, H. Improvement of Contact Force Calculation Model Considering Influence of Yield Strength on Coefficient of Restitution. Energies 2022, 15, 1041. [Google Scholar] [CrossRef]
- Jung, I.; Kim, J.; Kim, E.; Kim, C.D.; Kim, N.R.; Yang, C.-M.; Yu, W.-R.; Ahn, C.-H.; Jeon, S.-Y.; Cheon, J.; et al. Enhanced composite laminate fastening and delamination repair using hierarchical thermoplastic composite rivets. Compos. Part B Eng. 2024, 277, 111382. [Google Scholar] [CrossRef]
- Gardea, F.; Glaz, B.; Riddick, J.; Lagoudas, D.C.; Naraghi, M. Energy Dissipation Due to Interfacial Slip in Nanocomposites Reinforced with Aligned Carbon Nanotubes. ACS Appl. Mater. Interfaces 2015, 7, 9725–9735. [Google Scholar] [CrossRef]
Sample Name | Filler Content. wt% | Sample Name | Filler Content. wt% |
---|---|---|---|
Neat | - | G010 | GO 0.01 |
C01 | CNT 0.1 | G025 | GO 0.025 |
C03 | CNT 0.3 | G050 | GO 0.05 |
C05 | CNT 0.5 | G100 | GO 0.1 |
Specimens (Unit) | Young’s Modulus (GPa) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
Neat UD | 128.0 | 1090 | 0.905 |
GO-added UD | 124.4 | 1173 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.; Shin, M.; Kim, E.; Lee, S.; Yu, W.-R.; Ahn, C.-H.; Na, W. Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces. Polymers 2025, 17, 264. https://doi.org/10.3390/polym17030264
Bae S, Shin M, Kim E, Lee S, Yu W-R, Ahn C-H, Na W. Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces. Polymers. 2025; 17(3):264. https://doi.org/10.3390/polym17030264
Chicago/Turabian StyleBae, Seoyeon, Minhyeok Shin, Eunjung Kim, Sungbi Lee, Woong-Ryeol Yu, Cheol-Hee Ahn, and Wonjin Na. 2025. "Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces" Polymers 17, no. 3: 264. https://doi.org/10.3390/polym17030264
APA StyleBae, S., Shin, M., Kim, E., Lee, S., Yu, W.-R., Ahn, C.-H., & Na, W. (2025). Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces. Polymers, 17(3), 264. https://doi.org/10.3390/polym17030264