Nano-Silica-Modified Chitosan-Based Membranes for Application in Direct Methanol Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Synthesis of Unmodified Silica Particles by Sol–Gel Method
2.2.2. Synthesis of Unmodified Silica Particles by the Stober Method
2.2.3. Sulfonation of Silica Particles
2.2.4. Membrane Fabrication and Casting
3. Results
3.1. Fourier Transform Spectroscopy (FTIR) Analysis
3.2. X-Ray Diffraction (XRD)
3.3. Scanning Electron Microscopy (SEM)
3.4. Water Uptake Analysis of Pure and Sulfonated Chitosan Membranes with Silica
3.4.1. Effect of Silica Content on Water Uptake
3.4.2. Effect of Temperature on Water Uptake
3.5. Ion-Exchange Capacity (IEC) Analysis
3.6. Proton Conductivity Analysis
3.7. Methanol Permeability Analysis
3.8. Tensile Strength Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosli, N.A.H.; Loh, K.S.; Wong, W.Y.; Yunus, R.M.; Lee, T.K.; Ahmad, A.; Chong, S.T. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. Int. J. Mol. Sci. 2020, 21, 632. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, G.; Muhammed, A.P.; Thangarasu, S.; Oh, T.H. Investigating the Sulfonated Chitosan/Polyvinylidene Fluoride-Based Proton Exchange Membrane with fSiO2 as Filler in Microbial Fuel Cells. Membranes 2023, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Science, E. Synthesis of Composite Membrane Based Biopolymer Chitosan with Silica from Rice Husk Ash for Direct Methanol Fuel Cell Application Synthesis of Composite Membrane Based Biopolymer Chitosan with Silica From Rice Husk Ash For Direct Methanol Fuel Cell Application. IOP Conf. Ser. Earth Environ. Sci. 2021, 830, 012021. [Google Scholar] [CrossRef]
- Staszczyk, K.; Tylingo, R. Bio-Based Proton Exchange Membranes from Chitosan: A Review of Progress and Challenges. Energy Fuels 2025, 39, 13242–13259. [Google Scholar] [CrossRef]
- Alam, M.N. A Review: Nanofiller for Chitosan Membrane in DMFC Application. Hayyan J. 2025, 2, 52–60. [Google Scholar]
- Wang, J.; Zhang, H.; Jiang, Z.; Yang, X.; Xiao, L. Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. J. Power Source 2009, 188, 64–74. [Google Scholar] [CrossRef]
- Han, S.; Gu, B.; Kim, S.; Kim, S.; Mun, D.; Morita, K.; Kim, D.; Kim, W. Effect of Sulfur Variation on the Vulcanizate Structure of Silica-Filled Styrene-Butadiene Rubber Compounds with a Sulfide–Silane Coupling Agent. Polymers 2020, 12, 2815. [Google Scholar] [CrossRef]
- Ranjani, M.; Pannipara, M.; Al-Sehemi, A.G.; Vignesh, A.; Gnana kumar, G. Chitosan/sulfonated graphene oxide/silica nanocomposite membranes for direct methanol fuel cells. Solid State Ion. 2019, 338, 153–160. [Google Scholar] [CrossRef]
- Doobi, F.A.; Mir, F.Q. Exploring the development of natural biopolymer (chitosan)-based proton exchange membranes for fuel cells: A review. Results Surf. Interfaces 2024, 15, 100218. [Google Scholar] [CrossRef]
- Saladino, M.L.; Motaung, T.E.; Luyt, A.S.; Spinella, A.; Nasillo, G.; Caponetti, E. The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA. Polym. Degradation. Stab. 2012, 97, 452–459. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, W.; Zhang, Z.; Zhang, D.; Guo, Z.; Ren, P.; Liu, F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers 2023, 15, 4015. [Google Scholar] [CrossRef]
- Gaabour, L.H. Influence of silica nanoparticles incorporated with chitosan/polyacrylamide polymer nanocomposites. J. Mater. Res. Technol. 2019, 8, 2157–2163. [Google Scholar] [CrossRef]
- Muraishi, H. Crystallization of silica gel in alkaline solutions at 100 to 180 °C: Characterization of SiO2-Y by comparison with magadiite. Am. Miner. 1989, 74, 1147–1151. [Google Scholar]
- Morsy, M.; Mostafa, K.M.; Amyn, H.A.M.; El-Ebissy, A.A.H.; Salah, A.M.; Youssef, M.A. Synthesis and characterization of freeze dryer chitosan nanoparticles as multifunctional eco-friendly finish for fabricating easy care and antibacterial cotton textiles. Egypt. J. Chem. 2019, 62, 1277–1293. [Google Scholar] [CrossRef]
- Ioelovich, M. Crystallinity and Hydrophility of Chitin and Chitosan. Res. Rev. J. Chem. 2014, 3, 7–14. [Google Scholar]
- Onoka, I.; Hilonga, A. Synthesis and characterization of aminofunctionalized chitosan-silica nanocomposite for the removal of Cu2+ from wastewater. Discover. Mater. 2025, 5, 28. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Bagwe 2006. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef]
- Bindir, H.S.; Anye, V.C.; Bello, A.; Agboola, O.A.; Sanni, S.; Onwualu, A.P. Comparison Between the Impact of Rice Husk Ash and Silica Fillers on Water Absorption in Chitosan Membranes. In Proceedings of the 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 1–3 November 2023; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Malik, F.A.; Hakim, M.F.; Pambudi, T. Synthesis of Nanofiltration Membrane with Silica Variation for Wastewater Reduction. Berk. Sainstek 2025, 13, 32–38. [Google Scholar] [CrossRef]
- Srinophakun, P.; Thanapimmetha, A.; Plangsri, S.; Vetchayakunchai, S.; Saisriyoot, M. Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge. J. Clean. Prod. 2017, 142, 1274–1282. [Google Scholar] [CrossRef]
- Walkowiak-Kulikowska, J.; Wolska, J.; Koroniak, H. Polymers application in proton exchange membranes for fuel cells (PEMFCs). Phys. Sci. Rev. 2017, 2, 20170018. [Google Scholar] [CrossRef]
- Tsen, W.C. Composite proton exchange membranes based on chitosan and phosphotungstic acid immobilized one-dimensional attapulgite for direct methanol fuel cells. Nanomaterials 2020, 10, 1641. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Khastgir, D. Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells. Carbohydr. Polym. 2018, 179, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, R.I.; Katsumata, K.; Niwa, Y.; Namiki, N. Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment. Membranes 2020, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Kusumastuti, E.; Siniwi, W.T.; Mahatmanti, F.W.; Jumaeri, J.; Atmaja, L.; Widiastuti, N. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes. AIP Conf. Proc. 2016, 20037, 1725. [Google Scholar] [CrossRef]
- Liu, H.; Gong, C.; Wang, J.; Liu, X.; Liu, H.; Cheng, F.; Wang, G.; Zheng, G.; Qin, C.; Wen, S. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr. Polym. 2016, 136, 1379–1385. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Alsharaeh, E.H. High-performance functional materials based on polymer nanocomposites—A review. J. Polym. Sci. Eng. 2023, 6, 3292. [Google Scholar] [CrossRef]
- Jancar, J.; Douglas, J.F.; Starr, F.W.; Kumar, S.; Philippe Cassagnau Lesser, A.J.; Sternstein, S.S.; Buehler, M.J. Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 2010, 51, 3321–3343. [Google Scholar] [CrossRef]
- Kumar, S.K.; Ganesan, V.; Riggleman, R.A. Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. J. Chem. Phys. 2017, 147. [Google Scholar] [CrossRef]
- Soniat, M.; Houle, F.A. Swelling and diffusion during methanol sorption into hydrated Nafion. J. Phys. Chem. B 2018, 122, 8255–8268. [Google Scholar] [CrossRef]
- Lufrano, E.; Nicotera, I.; Enotiadis, A.; Rehman, M.H.U.; Simari, C. Elucidating the Water and Methanol Dynamics in Sulfonated Polyether Ether Ketone Nanocomposite Membranes Bearing Layered Double Hydroxides. Membranes 2022, 12, 419. [Google Scholar] [CrossRef]
- Imani, N.A.C.; Kusumastuti, Y.; Petrus, H.T.B.M.; Timotius, D.; Kobayashi, M. Enhanced Mechanical Properties of Organic-Inorganic Chitosan/Nano Silica Composite Film. J. Adv. Manuf. Technol. 2021, 15, 1–11. [Google Scholar]















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modau, L.E.; Mashola, T.; Sigwadi, R.A.; Mokrani, T.; Nemavhola, F. Nano-Silica-Modified Chitosan-Based Membranes for Application in Direct Methanol Fuel Cells. Polymers 2025, 17, 3281. https://doi.org/10.3390/polym17243281
Modau LE, Mashola T, Sigwadi RA, Mokrani T, Nemavhola F. Nano-Silica-Modified Chitosan-Based Membranes for Application in Direct Methanol Fuel Cells. Polymers. 2025; 17(24):3281. https://doi.org/10.3390/polym17243281
Chicago/Turabian StyleModau, Livhuwani Elsie, Tebogo Mashola, Rudzani Annetjie Sigwadi, Touhami Mokrani, and Fulufhelo Nemavhola. 2025. "Nano-Silica-Modified Chitosan-Based Membranes for Application in Direct Methanol Fuel Cells" Polymers 17, no. 24: 3281. https://doi.org/10.3390/polym17243281
APA StyleModau, L. E., Mashola, T., Sigwadi, R. A., Mokrani, T., & Nemavhola, F. (2025). Nano-Silica-Modified Chitosan-Based Membranes for Application in Direct Methanol Fuel Cells. Polymers, 17(24), 3281. https://doi.org/10.3390/polym17243281

