Properties of FRC with Carbon Fibres from Recycled Wind Turbine Blades
Abstract
1. Introduction
1.1. Recycling of FRP Composites
1.2. FRP Fibres in Concrete
1.3. Carbon FRP Fibres in Concrete
2. Materials and Methods
3. Results and Discussion
3.1. Apparent Density
3.2. Compression
3.3. Tension
3.4. Brittleness
3.5. Fracture Energy
3.6. Fracture Surface and Failure Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Upadhyayul, V.K.K.; Gadhamshatty, V.; Athanassiadis, D.; Tysklir, M.; Meng, F.; Pan, Q.; Cullen, J.M.; Yacout, D.M.M. Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment. Environ. Sci. Technol. 2022, 56, 1267–1277. [Google Scholar] [CrossRef]
- Mishnaewsky, L.; Beranner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sorensen, B.F. Materials for wind blades: An overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- Recykling Albo Budownictwo. Drugie Życie Łopat Wiatrowych. Available online: https://zielonagospodarka.pl/recykling-albo-budownictwo-drugie-zycie-lopat-wiatrowych-1766 (accessed on 10 September 2025).
- Newly Discovered Chemical Process Renders All Existing Wind Turbine Blades Recyclable. Available online: https://www.offshorewind.biz/2023/02/08/newly-discovered-chemical-process-renders-all-existing-wind-turbine-blades-recyclable/ (accessed on 1 October 2025).
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- Qureshi, J. A review of recycling methods for fibre reinforced polymer composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
- Katnam, K.B.; Comer, A.J.; da Silva, L.F.M.; Young, T.M. Composite repair in wind turbine blades: An overview. J. Adhes. 2015, 91, 113–139. [Google Scholar] [CrossRef]
- Karavida, S.; Peponi, A. Wind turbine blade waste circularity coupled with urban regeneration: A conceptual framework. Energies 2022, 16, 1464. [Google Scholar] [CrossRef]
- Kwame, A.-F.; Akinlabi, E.T. Recycling of Fibre Reinforced Composites: A Review of Current Technologies. In Proceedings of the DII-2017 Conference on Infrastructure Development and Investment—Strategies for Africa, Livingstone, Zambia, 30 August–1 September 2017; pp. 157–167. [Google Scholar]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 71, 61–99. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.H. Current status of carbon fibre and carbon fibre composites recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The use of waste in cement production in Poland—The move towards sustainable development. Arch. Civ. Eng. 2022, 38, 67–81. [Google Scholar] [CrossRef]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Hamou, A.T.; Massicotte, L. Valorisation of recycled FRP materials from wind turbine blades in concrete. Resour. Conserv. Recycl. 2021, 174, 1055807. [Google Scholar]
- Correia, J.R.; Almeida, N.M.; Figueira, J.R. Recycling of FR P composites: Reusing fine GFRP waste in concrete mixtures. J. Clean. Prod. 2011, 19, 1745–1753. [Google Scholar] [CrossRef]
- Ogi, K.; Shinoda, T.; Mizui, M. Strength in concrete reinforced with recycled CFRP pieces. Compos. Part A 2005, 36, 893–902. [Google Scholar] [CrossRef]
- Pham, T.M. Fibre-reinforced concrete: State-of-the-art-review on bridging mechanism, mechanical properties, durability, and eco-economic analysis. Case Stud. Constr. Mater. 2025, 22, e04574. [Google Scholar] [CrossRef]
- Vairagade, V.S.; Dhale, S.A. Hybrid fibre reinforced concrete—A state of the art review. Hybrid Adv. 2023, 3, 100035. [Google Scholar] [CrossRef]
- Akin, S.K.; Kartal, S.; Musevitoglu, A.; Sancioglu, S.; Zia, A.J.; Ilugun, A. Macro and micro polypropylene fiber effect on reinforced concrete beams with insufficient lap splice length. Case Stud. Constr. Mater. 2022, 16, e1005. [Google Scholar] [CrossRef]
- Christopher, C.G.; Gopal, R.; Sadasivam, S.; Esaki, A.K.D.; Kumar, P.D. Experimental Toughness and Durability Evaluation of FRC Composite Reinforced with Steel–Polyester Fiber Combination. Int. J. Concr. Struct. Mater. 2023, 17, 39. [Google Scholar] [CrossRef]
- Xia, D.; Yu, S.; Feng, C.; Li, B.; Zheng, Z.; Wu, H. Damage characteristics of hybrid fiber reinforced concrete under the freeze-thaw cycles and compound-salt attack. Case Stud. Constr. Mater. 2023, 18, e01814. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Stud. Constr. Mater. 2022, 16, e00941. [Google Scholar] [CrossRef]
- Abade, A. Mechanical properties of hybrid fibre-reinforced concrete—Analytical modelling and experimental behaviour. Mag. Concr. Res. 2016, 68, 823–843. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Abd, S.M.; Hussein, O.H.; Tayeh, B.A.; Najm, H.M.; Quaidi, S. Influence of adding short carbon fibers on the flexural behavior of textile-reinforced concrete one-way slab. Case Stud. Constr. Mater. 2022, 17, e01601. [Google Scholar] [CrossRef]
- Das, S.; Sobuz, M.H.R.; Tam, V.W.; Akid, A.S.M.; Sutan, N.M.; Rahman, R.M. Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Constr. Build. Mater. 2020, 262, 120561. [Google Scholar] [CrossRef]
- Behera, G.C.; Panda, S.; Kanda, P. Effect of length of fibers on mechanical properties of normal strength concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 970, 012020. [Google Scholar] [CrossRef]
- Abdallah, S.; Fan, M.; Ress, D.W. Bonding mechanisms and strength of steel fiber–reinforced cementitious composites: Overview. J. Mater. Civ. Eng. 2018, 30, 04018001. [Google Scholar] [CrossRef]
- Leporace-Guimil, B.; Mudadu, A.; Conforti, A.; Plizzari, G.A. Influence of fiber orientation and structural-integrity reinforcement on the flexural behavior of elevated slabs. Eng. Struct. 2022, 252, 113583. [Google Scholar] [CrossRef]
- Han, B.; Zhang, L.; Zhang, C.; Wang, Y.; Yu, X.; Ou, J. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Constr. Build. Mater. 2016, 125, 479–489. [Google Scholar] [CrossRef]
- Laranjeira, F.; Aquado, A.; Molins, C.; Grunewald, S.; Walraven, J.; Cavalaro, S. Framework to predict the orientation of fibers in FRC: A novel philosophy. Cem. Concr. Res. 2012, 42, 752–768. [Google Scholar] [CrossRef]
- Ferrara, L.; Ozyurt, N.; di Prisco, M. High mechanical performance of fibre reinforced cementitious composites: The role of ‘‘casting-flow induced’’ fibre orientation. Mater. Struct. 2011, 44, 109–128. [Google Scholar] [CrossRef]
- Li, F.-Y.; Li, L.-Y.; Dang, Y.; Wu, P.-F. Study of the effect of fibre orientation on artificially directed steel fibre-reinforced concrete. Adv. Mater. Sci. Eng. 2018, 2018, 8657083. [Google Scholar] [CrossRef]
- Marcalikova, Z.; Cajka, R.; Bilek, V.; Bujdos, D.; Suchara, O. Determination of mechanical characteristics for fiber-reinforced concrete with straight and hooked fibers. Crystals 2020, 10, 545. [Google Scholar] [CrossRef]
- Lameiras, R.; Barros, J.A.O.; Azenha, M. Influence of casting condition on the anisotropy of the fracture properties of steel fibre reinforced self-compacting concrete (SFRSCC). Cem. Concr. Coposites 2015, 59, 60–76. [Google Scholar] [CrossRef]
- Di Prisco, M.; Plizzari, G.; Vandewalle, L. Fibre reinforced concrete: New design perspectives. Mater. Struct. 2009, 42, 1261–1281. [Google Scholar] [CrossRef]
- Meng, F.; Olivetti, E.A.; Zhao, Y.; Chang, J.C.; Pickering, S.J.; McKechnie, J. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management option. ACS Sustain. Chem. Eng. 2018, 6, 9854–9865. [Google Scholar] [CrossRef]
- Meng, F.; McKechnie, J.; Turner, T.A.; Pickering, S.J. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibre. Compos. Part A Appl. Sci. Manuf. 2017, 100, 206–214. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef]
- Smoleń, J.; Olesik, P.; Jała, J.; Adamcio, A.; Kurtyka, K.; Godzierz, M.; Kozera, R.; Kozioł, M.; Boczkowska, A. The use of carbon fibers recovered by pyrolysis from end-of-life wind turbine blades in epoxy-based composite panels. Polymers 2022, 14, 2925. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, L.; Shang, X.; Shen, Z.; Fu, R.; Guo, W.L. Evaluation of mechanical properties and pyrolysis products of carbon fibers recycled by microwave pyrolysis. ACS Omega 2022, 7, 13529–13537. [Google Scholar] [CrossRef]
- Muley, P.; Varpe, S.; Ralwani, R. Chopped carbon fibers innovative material for enhancement of concrete performances. Int. J. Sci. Eng. Appl. Sci. 2015, 1, 164–169. [Google Scholar]
- Upadhyay, A.; Pandey, A.; Singh, C.; Bhardwaj, D. To study feasibility of carbon fiber in concrete. Int. Res. J. Eng. Technol. 2020, 7, 7161–7164. [Google Scholar]
- Li, Y.-F.; Li, J.-Y.; Ramanathan, G.K.; Chang, S.-M.; Shen, M.-Y.; Tsai, Y.-K.; Huang, C.-H. An Experimental Study on Mechanical Behaviors of Carbon Fiber and Microwave-Assisted Pyrolysis Recycled Carbon. Sustainability 2021, 13, 6829. [Google Scholar] [CrossRef]
- Mello, E.; Ribellato, C.; Mohamedelhassan, E. Improving concrete properties with fibers addition. Int. J. Civ. Environ. Eng. 2014, 8, 249–254. [Google Scholar]
- Gull, I.; Tantray, M.A. Effect of super plasticizers on fresh and hardened state properties of short carbon fiber reinforced electrically conductive concrete. Int. J. Recent Technol. Eng. 2020, 8, 2644–2650. [Google Scholar] [CrossRef]
- Ghanem, S.; Bowling, J. Mechanical properties of carbon-fiber–reinforced concrete. Adv. Civ. Eng. Matls 2019, 8, 224–234. [Google Scholar] [CrossRef]
- Jena, B.; Patel, A. Study on the mechanical properties and microstructure of chopped carbon fiber reinforced self-compacting concrete. Int. J. Civ. Eng. Technol. 2016, 7, 223–231. [Google Scholar]
- Liu, G.-J.; Bai, E.-L.; Xu, J.-Y.; Yang, N. Mechanical properties of carbon fiber-reinforced polymer concrete with different polymer–cement ratios. Materials 2019, 12, 3530. [Google Scholar] [CrossRef]
- Rangekov, M.; Nassiri, S.; Haselbach, L.; Englund, K. Using carbon fiber composites for reinforcing pervious concrete. Constr. Build. Mater. 2016, 126, 875–885. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K.; Shim, H.-B.; Rhee, K.-Y. Effect of different cross-section types on mechanical properties of carbon fibers-reinforced cement composites. Mater. Sci. Eng. A 2004, 366, 348–355. [Google Scholar] [CrossRef]
- Li, V.V.; Obla, K.H. Effect of fiber length variation on tensile properties of carbon-fiber cement composites. Compos. Eng. 1994, 4, 947–996. [Google Scholar] [CrossRef]
- Faneca, G.; Segura, I.; Torrents, J.M.; Aguado, A. Development of conductive cementitious materials using recycled carbon fibres. Cem. Concr. Compos. 2018, 92, 135–144. [Google Scholar] [CrossRef]
- Patchen, A.; Young, S.; Penumadu, D. An investigation of mechanical properties of recycled carbon fiber reinforced ultra-high-performance concrete. Materials 2023, 16, 314. [Google Scholar] [CrossRef]
- Vitale, P.; Napolitano, R.; Colella, R.; Menna, C.; Asprone, D. Cement-matrix composites using CFRP waste: A circular economy perspective using industrial symbiosis. Materials 2023, 14, 1484. [Google Scholar] [CrossRef]
- Nguyen, H.; Carvelli, V.; Fujii, T.; Okubo, K. Cement mortar reinforced with reclaimed carbon fibres, CFRP waste or prepreg carbon waste. Constr. Build. Mater. 2016, 126, 321–331. [Google Scholar] [CrossRef]
- Hao, Y.; Shi, C.; Bi, Z.; Lai, Z.; She, A.; Yao, W. Recent advances in properties and applications of carbon fiber-reinforced smart cement-based composites. Materials 2023, 16, 2552. [Google Scholar] [CrossRef]
- Anmet. Available online: https://www.anmet.com.pl// (accessed on 2 October 2025).
- PN-EN 12350-2:2019; Testing Fresh Concrete. Part 2: Slump Test. Polski Komitet Normalizacyjny: Warsaw, Poland, 2014.
- PN-EN 206:2014; Concrete. Specification, Performance, Production And Conformity. Polski Komitet Normalizacyjny: Warsaw, Poland, 2014.
- Figueiredo, A.D.; Ceccato, M.R. Workability analysis of steel fiber reinforced concrete using slump and Ve-Be test. Mater. Res. 2015, 18, 1284–1290. [Google Scholar] [CrossRef]
- PN-EN 12390-3:2019; Testing Hardened Concrete. Part 3: Compressive Strength Of Test Specimens. Polski Komitet Normalizacyjny: Warsaw, Poland, 2014.
- PN-EN 12390-6:2011; Testing Hardened Concrete. Part 6: Tensile Strength in Splitting of Test Specimens. Polski Komitet Normalizacyjny: Warsaw, Poland, 2014.
- Muthkumarana, T.V.; Arachchi, M.A.V.H.M.; Somarathna, H.M.C.C.; Raman, S.N. A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Constr. Build. Mater. 2023, 366, 130173. [Google Scholar] [CrossRef]
- Zheng, R.; Pang, J.; Sun, J.; Su, Y.; Xu, G. Damage model of carbon-fiber-reinforced concrete based on energy conversion principle. J. Compos. Sci. 2024, 8, 71. [Google Scholar] [CrossRef]
- Carrera, K.; Kunzel, K.; Papez, V.; Sovjak, R.; Kheml, P.; Fornusek, J.; Mara, M.; Konrad, P. Flexural strength of fibre reinforced concrete in relation to the angle of magnetically orientated fibres. MATEC Web Conf. 2022, 364, 05017. [Google Scholar] [CrossRef]
- Jin, A.-H.; Woo, J.-S.; Yun, H.-D.; Kim, S.-W.; Park, W.-S.; Choi, W.-C. Influence of concrete strength and fiber properties on residual flexural strength of steel fiber-reinforced concrete. Constr. Build. Mater. 2025, 489, 142366. [Google Scholar] [CrossRef]












| Mix ID | Cement | Water | Aggregate 0/2 mm | Aggregate 2/8 mm | rCF Fibre |
|---|---|---|---|---|---|
| C-0 | ![]() | 270 | ![]() | ![]() | 0 |
| CF-5 | 5.0 | ||||
| CF-10 | 10.0 | ||||
| CF-15 | 15.0 |
| Series ID | C-0 | CF-25 | CF-35 | CF-45 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| rCF length (mm) | - | 25 | 35 | 45 | ||||||
| rCF dosage (%) | 0 | 0.29 | 0.58 | 0.87 | 0.29 | 0.58 | 0.87 | 0.29 | 0.58 | 0.87 |
| Slump (mm) | 140 | 30 | 20 | 10 | 30 | 20 | 10 | 30 | 20 | 10 |
| Consistency class | S3 | S1 | S1 | S1 | ||||||
| Series ID | rCF (%) | (MPa) | (MPa) | (MPa) | BI (−) | (J) | (J) | |
|---|---|---|---|---|---|---|---|---|
| C-0 | 0 | 44.4 (1.5) | 2.62 (0.16) | 0.059 | 88 (5) | |||
| CF-25 | 0.29 | 45.3 (1.6) | 2.63 (0.15) | 2.86 (0.18) | 0.058 | 0.063 | 91 (9) | 109 (5) |
| 0.58 | 45.1 (1.3) | 2.64 (0.21) | 2.90 (0.11) | 0.059 | 0.064 | 92 (10) | 122 (10) | |
| 0.87 | 40.4 (1.9) | 2.65 (0.17) | 3.26 (0.18) | 0.066 | 0.081 | 99 (8) | 150 (9) | |
| CF-35 | 0.29 | 44.2 (1.3) | 2.88 (0.19) | 3.03 (0.15) | 0.065 | 0.069 | 104 (12) | 132 (8) |
| 0.58 | 44.4 (1.7) | 2.80 (0.11) | 3.10 (0.20) | 0.063 | 0.070 | 102 (10) | 143 (7) | |
| 0.87 | 40.9 (1.5) | 2.75 (0.18) | 3.68 (0.12) | 0.067 | 0.090 | 95 (9) | 173 (9) | |
| CF-45 | 0.29 | 44.1 (1.1) | 2.93 (0.15) | 3.06 (0.20) | 0.066 | 0.069 | 108 (11) | 150 (10) |
| 0.58 | 42.8 (1.5) | 2.86 (0.19) | 3.19 (0.17) | 0.067 | 0.075 | 109 (8) | 173 (12) | |
| 0.87 | 40.2 (1.7) | 2.76 (0.21) | 4.35 (0.28) | 0.069 | 0.108 | 107 (10) | 231 (13) | |
| Series ID | CF 25 | CF 35 | CF 45 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| rCF (%) | 0.29 | 0.58 | 0.87 | 0.29 | 0.58 | 0.87 | 0.29 | 0.58 | 0.87 |
| l (mm) | 8.4 | 10.1 | 11.0 | 10.5 | 13.6 | 13.8 | 15.8 | 16.3 | 16.9 |
| Σ l (mm) | 412 | 596 | 904 | 461 | 796 | 1063 | 538 | 814 | 1285 |
| n (pc) | 49 | 59 | 82 | 44 | 58 | 77 | 34 | 50 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmatuła, F.; Korentz, J. Properties of FRC with Carbon Fibres from Recycled Wind Turbine Blades. Polymers 2025, 17, 3199. https://doi.org/10.3390/polym17233199
Szmatuła F, Korentz J. Properties of FRC with Carbon Fibres from Recycled Wind Turbine Blades. Polymers. 2025; 17(23):3199. https://doi.org/10.3390/polym17233199
Chicago/Turabian StyleSzmatuła, Filip, and Jacek Korentz. 2025. "Properties of FRC with Carbon Fibres from Recycled Wind Turbine Blades" Polymers 17, no. 23: 3199. https://doi.org/10.3390/polym17233199
APA StyleSzmatuła, F., & Korentz, J. (2025). Properties of FRC with Carbon Fibres from Recycled Wind Turbine Blades. Polymers, 17(23), 3199. https://doi.org/10.3390/polym17233199




