Switchable Multicolor Single-Mode Lasing in Polymer-Coupled Microfibers
Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Yan, Y.; Gao, Z.; Du, Y.; Dong, H.; Yao, J.; Zhao, Y.S. Full-color laser displays based on organic printed microlaser arrays. Nat. Commun. 2019, 10, 870. [Google Scholar] [CrossRef] [PubMed]
 - Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef] [PubMed]
 - Fan, F.; Turkdogan, S.; Liu, Z.; Shelhammer, D.; Ning, C.Z. A monolithic white laser. Nat. Nanotechnol. 2015, 10, 796–803. [Google Scholar] [CrossRef]
 - Gao, Z.; Zhang, W.; Yan, Y.; Yi, J.; Dong, H.; Wang, K.; Yao, J.; Zhao, Y. Proton-controlled organic microlaser switch. ACS Nano 2018, 12, 5734–5740. [Google Scholar] [CrossRef]
 - Gu, F.; Xie, F.; Lin, X.; Linghu, S.; Fang, W.; Zeng, H.; Tong, L.; Zhuang, S. Single whispering-gallery mode lasing in polymer bottlemicroresonators via spatial pump engineering. Light Sci. Appl. 2017, 6, e17061. [Google Scholar] [CrossRef]
 - Annavarapu, N.; Goldberg, I.; Hamdad, S.; Elkhouly, K.; Puybaret, R.; Tezcan, D.; Genoe, J.; Gehlhaar, R.; Heremans, P. Four-dimensional design space of high-Q second-order distributed feedback perovskite lasers. Adv. Opt. Mater. 2024, 12, 2302496. [Google Scholar] [CrossRef]
 - Fu, Y.; Zhai, T. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron. 2020, 13, 18–34. [Google Scholar] [CrossRef]
 - Goldberg, I.; Annavarapu, N.; Leitner, S.; Elkhouly, K.; Han, F.; Verellen, N.; Kuna, T.; Qiu, W.; Rolin, C.; Genoe, J.; et al. Multimode lasing in all-solution-processed UV-nanoimprinted distributed feedback MAPbI3 perovskite waveguides. ACS Photonics 2023, 10, 1591–1600. [Google Scholar] [CrossRef]
 - Xiao, Y.; Meng, C.; Wang, P.; Ye, Y.; Yu, H.; Wang, S.; Gu, F.; Dai, L.; Tong, L. Single-nanowire single-mode laser. Nano Lett. 2011, 11, 1122–1126. [Google Scholar] [CrossRef]
 - Yang, Z.; Wang, D.; Meng, C.; Wu, Z.; Wang, Y.; Ma, Y.; Dai, L.; Liu, X.; Hasan, T.; Liu, X.; et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. Nano Lett. 2014, 14, 3153–3159. [Google Scholar] [CrossRef]
 - Li, H.; Li, J.; Qiang, L.; Zhang, Y.; Hao, S. Single-mode lasing of nanowire self-coupled resonator. Nanoscale 2013, 5, 6297–6302. [Google Scholar] [CrossRef]
 - Feng, L.; Wong, Z.; Ma, R.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346, 972–975. [Google Scholar] [CrossRef]
 - Cao, Q.; Liu, R.; Wang, H.; Lu, Y.; Rotter, C.Q.; Gong, Q.; Xiao, Y. Reconfigurable symmetry-broken laser in a symmetric microcavity. Nat. Commun. 2020, 11, 1136. [Google Scholar] [CrossRef]
 - Chen, W.; Ozdemir, S.; Zhao, G.; Wiersig, J.; Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 2017, 548, 192–196. [Google Scholar] [CrossRef]
 - Yin, B.; Wu, W.; Dai, C.; Jia, H.; Zhang, C.; Yao, J. Magnetically controlled assembly of dielectric microspheres toward photonic molecules. Adv. Funct. Mater. 2021, 31, 2103945. [Google Scholar] [CrossRef]
 - Ge, K.; Ruan, J.; Cui, L.; Guo, D.; Tong, J.; Zhai, T. Dynamic manipulation of WGM lasing by tailoring the coupling strength. Opt. Express 2022, 30, 28752–28761. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, J.; Yan, Y.; Wei, C.; Zhang, W.; Gao, Z.; Zhao, Y. Switchable single-mode perovskite microlasers modulated by responsive organic microdisks. Nano Lett. 2018, 18, 1241–1245. [Google Scholar] [CrossRef]
 - Chen, T.; Sun, H. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv. Opt. Mater. 2014, 2, 220–225. [Google Scholar] [CrossRef]
 - Wong, W.; Zhang, J.; Garg, G.; Jagadish, C.; Tan, H. Mode management in bottom-up, parity-time-symmetric micro-cavity lasers. Laser Photonics Rev. 2024, 18, 2400222. [Google Scholar] [CrossRef]
 - Siegle, T.; Schierle, S.; Kraemmer, S.; Richter, B.; Wondimu, S.; Schuch, P.; Koos, C.; Kalt, H. Photonic molecules with a tunable inter-cavity gap. Light Sci. Appl. 2017, 6, e16224. [Google Scholar] [CrossRef]
 - Zhu, S.; Ma, X.; Liu, C.; Luo, W.; Liu, J.; Shi, B.; Guo, W.; Lau, K. Controlled single-mode emission in quantum dot micro-lasers. Opt. Express 2021, 29, 13193–13203. [Google Scholar] [CrossRef] [PubMed]
 - Wang, Y.; Xu, C.; Jiang, M.; Li, J.; Dai, J.; Lu, J.; Li, P. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 2016, 8, 16631. [Google Scholar] [CrossRef]
 - Heylman, K.; Thakkar, N.; Horak, E.; Quillin, S.; Cherqui, C.; Knapper, K.; Masiello, D.; Goldsmith, R. Optical microresonators as single-particle absorption spectrometers. Nat. Photonics 2016, 10, 788–795. [Google Scholar] [CrossRef]
 - Baaske, M.; Foreman, M.; Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free μ-cavity biosensor platform. Nat. Nanotechnol. 2014, 9, 933. [Google Scholar] [CrossRef]
 - Wang, Y.; Zeng, S.; Humbert, G.; Ho, H. Microfluidic whispering gallery mode optical sensors for biological applications. Laser Photonics Rev. 2020, 14, 2000135. [Google Scholar] [CrossRef]
 - Vahala, K. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
 - Ge, K.; Xu, Z.; Guo, D.; Niu, B.; Ruan, J.; Cui, L.; Zhai, T. RGB WGM lasing woven in fiber braiding cavity. Sci. China Inf. Sci. 2022, 65, 182403. [Google Scholar] [CrossRef]
 - Ning, C.; Dou, L.; Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070. [Google Scholar] [CrossRef]
 - Ge, K.; Shi, X.; Xu, Z.; Cui, L.; Guo, D.; Li, S.T.; Zhai, T. Full-color WGM lasing in nested microcavities. Nanoscale 2021, 13, 10792. [Google Scholar] [CrossRef] [PubMed]
 - Ge, K.; Guo, D.; Niu, B.; Xu, Z.; Ruan, J.; Zhai, T. Pump-controlled RGB single-mode polymer lasers based on a hybrid 2D-3D μ-cavity for temperature sensing. Nanophotonics 2021, 10, 4591–4599. [Google Scholar] [CrossRef]
 - Jiang, X.; Zou, C.; Wang, L.; Gong, Q.; Xiao, Y. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev. 2016, 10, 40–61. [Google Scholar] [CrossRef]
 - Jin, L.; Chen, X.; Wu, Y.; Ai, X.; Yang, X.; Xiao, S.; Song, Q. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat. Commun. 2022, 13, 1727. [Google Scholar] [CrossRef] [PubMed]
 - Du, Y.; Zou, C.; Zhang, C.; Wang, K.; Qiao, C.; Yao, J.; Zhao, Y. Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light Sci. Appl. 2020, 9, 151. [Google Scholar] [CrossRef]
 - Liu, Z.; Zhang, X.; Qu, G.; Li, S.; Kuai, Y.; Gao, J.; Liu, Y.; Cao, Z.; Yu, B.; Hu, Z. Laser mode control based on chiral liquid crystal microcavities. J. Mater. Chem. C 2024, 12, 7407–7414. [Google Scholar] [CrossRef]
 - Zhu, J.; Ozdemir, S.K.; Xiao, Y.; Li, L.; He, L.; Chen, D.; Yang, L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 2010, 4, 46–49. [Google Scholar] [CrossRef]
 - Zhou, N.; Yang, Y.; Guo, X.; Gong, J.; Shi, Z.; Yang, Z.; Wu, H.; Gao, Y.; Yao, N.; Fang, W.; et al. Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Sci. Adv. 2022, 8, eabn2026. [Google Scholar] [CrossRef]
 - Hao, X.; Zhao, H.; Zhao, S. All-optical tunable single-mode lasing in polymer-coated microresonators. Opt. Laser Technol. 2025, 192, 113773. [Google Scholar] [CrossRef]
 - Cheng, H.; Pang, Y.; Lin, C.; Wu, S.; You, B.; Chen, J.; Hsu, H. Flexible water-resistant bamboo-like perovskite-embedded polymer nano/microfibers exhibiting Fabry-Pérot lasing. APL Mater. 2024, 12, 13. [Google Scholar] [CrossRef]
 - Duan, R.; Thung, Y.T.; Zhang, Z.; Durmusoglu, E.G.; He, Y.; Xiao, L.; Lee, C.X.X.; Lew, W.S.; Zhang, L.; Li, H.; et al. Colloidal nanoplatelets-based soft matter technology for photonic interconnected networks: Low-threshold lasing and polygonal self-coupling microlasers. Laser Photonics Rev. 2024, 18, 2300745. [Google Scholar] [CrossRef]
 - Shi, X.; Liu, Z.; Zhao, J.; Shen, K.; Zhai, T. Reconfigurable logic gates driven by spatially designed excitation: Spectra manipulation the coupled random laser system. APL Photonics 2024, 9, 116103. [Google Scholar] [CrossRef]
 - Liu, Y.; Lin, X.; Wei, C.; Zhang, C.; Yao, J.; Zhao, Y.S. 3D-printed optical-electronic integrated devices. Sci. China Chem. 2019, 62, 1398–1404. [Google Scholar] [CrossRef]
 - Zhang, C.; Zou, C.; Zhao, Y.; Dong, C.; Wei, C.; Wang, H.; Liu, Y.; Guo, G.N.; Yao, J.; Zhao, Y.S. Organic printed photonics: From microring lasers to integrated circuits. Sci. Adv. 2015, 1, e1500257. [Google Scholar] [CrossRef]
 - Hou, Y.; Zhou, Z.; Zhang, C.; Tang, J.; Fan, Y.; Xu, F.; Zhao, Y.S. Full-color flexible laser displays based on random laser arrays. Sci. China Mater. 2021, 64, 2805–2812. [Google Scholar] [CrossRef]
 - Wang, C.; Yan, Z.; Gong, C.; Xie, H.; Qiao, Z.; Yuan, Z.; Chen, Y. Multicolor light mixing in optofluidic concave interfaces for anticounterfeiting with deep learning authentication. ACS Appl. Mater. Interfaces 2022, 14, 10927–10935. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, C.; Dong, H.; Zhang, C.; Fan, Y.; Yao, J.; Zhao, Y.S. Photonic skins based on flexible organic microlaser arrays. Sci. Adv. 2021, 7, eabh3530. [Google Scholar] [CrossRef] [PubMed]
 - Ge, K.; Gu, D.; Ma, X.; Xu, Z.; Hayat, A.; Li, S.; Zhai, T. Large-area biocompatible random laser for wearable applications. Nanomaterials 2021, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
 - Nie, N.; Gong, X.; Gong, C.; Qiao, Z.; Wang, Z.; Fang, G.; Chen, Y. A wearable thin-film hydrogel laser for functional sensing on skin. Anal. Chem. 2024, 96, 9159–9166. [Google Scholar] [CrossRef] [PubMed]
 




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, K.; Zhou, Z.; Li, S. Switchable Multicolor Single-Mode Lasing in Polymer-Coupled Microfibers. Polymers 2025, 17, 2917. https://doi.org/10.3390/polym17212917
Ge K, Zhou Z, Li S. Switchable Multicolor Single-Mode Lasing in Polymer-Coupled Microfibers. Polymers. 2025; 17(21):2917. https://doi.org/10.3390/polym17212917
Chicago/Turabian StyleGe, Kun, Zishu Zhou, and Songtao Li. 2025. "Switchable Multicolor Single-Mode Lasing in Polymer-Coupled Microfibers" Polymers 17, no. 21: 2917. https://doi.org/10.3390/polym17212917
APA StyleGe, K., Zhou, Z., & Li, S. (2025). Switchable Multicolor Single-Mode Lasing in Polymer-Coupled Microfibers. Polymers, 17(21), 2917. https://doi.org/10.3390/polym17212917
        
