Enhancing Radiation Shielding Properties of Pharmaceutical Polymers Through Zinc Oxide Incorporation: A Study on Gamma Energy Attenuation
Abstract
1. Introduction
2. Materials and Method
2.1. Fabrication of Benecel K-4M Samples
2.2. Linear and Mass Attenuation Coefficient Measurements
2.3. Theory
3. Results and Discussion
3.1. Linear and Mass Attenuation Coefficient Measurement
3.2. Mean Free Path (MFP)
3.3. Radiation Protection Efficiency (RPE)
3.4. Effective Atomic Number (Zeff) and Electron Density (Neff)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, S.; Mili, M.; Bajpai, H.; Hashmi, S.A.R.; Srivastava, A.K. Advanced lead free, multi-constituent-based composite materials for shielding against diagnostic X-rays. Plast. Rubber Compos. 2021, 50, 48–60. [Google Scholar] [CrossRef]
- Rajagopal, S.; Anand, S.P. Design and development of a low-cost, less weight, and lead-free composite materials for radiation shielding. ECS Trans. 2022, 107, 989. [Google Scholar] [CrossRef]
- Toto, E.; Lambertini, L.; Laurenzi, S.; Santonicola, M.G. Recent advances and challenges in polymer-based materials for space radiation shielding. Polymers 2024, 16, 382. [Google Scholar] [CrossRef]
- Okafor, C.E.; Okonkwo, U.C.; Okokpujie, I.P. Trends in reinforced composite design for ionizing radiation shielding applications: A review. J. Mater. Sci. 2021, 56, 11631–11655. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Almurayshid, M.; Almasoud, F.I.; Alyahyawi, A.R.; Yasmin, S.; Elsafi, M. Developed a new radiation shielding absorber composed of waste marble, polyester, PbCO3, and CdO to reduce waste marble considering environmental safety. Materials 2022, 15, 8371. [Google Scholar] [CrossRef]
- Ambika, M.R.; Nagaiah, N.; Suman, S.K. Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites. J. Appl. Polym. Sci. 2017, 134, 44657. [Google Scholar] [CrossRef]
- Yoon, M.S.; Jang, H.M.; Kwon, K.T. Influence of parameters and performance evaluation of 3D-Printed tungsten mixed filament shields. Polymers 2022, 14, 4301. [Google Scholar] [CrossRef] [PubMed]
- Cinan, Z.M. A theoretical focus on nanoparticle attenuation capabilities for potential utilizations in radiation protect: TiO2-SiO2-Fe3O4-B4C-Al2O3. Phys. Scr. 2023, 98, 085315. [Google Scholar] [CrossRef]
- Staniszewska, M.A.; Zaborski, M.; Kusiak, E.; Pankowski, P. New material for shields in X-ray diagnostic procedures. J. US-China Med. Sci. 2016, 13, 206–212. [Google Scholar] [CrossRef]
- Almurayshid, M.; Alsagabi, S.; Alssalim, Y.; Alotaibi, Z.; Almsalam, R. Feasibility of polymer-based composite materials as radiation shield. Radiat. Phys. Chem. 2021, 183, 109425. [Google Scholar] [CrossRef]
- Sushmita, K.; Madras, G.; Bose, S. The journey of polycarbonate-based composites towards suppressing electromagnetic radiation. Funct. Compos. Mater. 2021, 2, 13. [Google Scholar] [CrossRef]
- Saiyad, M.; Devashrayee, N.M.; Mevada, R.K. Study the effect of dispersion of filler in polymer composite for radiation shielding. Polym. Compos. 2014, 35, 1263–1266. [Google Scholar] [CrossRef]
- Ni, M.; Tang, X.; Chai, H.; Zhang, Y.; Chen, T.; Chen, D. Preparation and properties of the fast-curing γ-ray-shielding materials based on polyurethane. Nucl. Eng. Technol. 2016, 48, 1396–1403. [Google Scholar] [CrossRef]
- Bel, T.; Arslan, C.; Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2019, 221, 58–67. [Google Scholar] [CrossRef]
- Debotton, N.; Dahan, A. Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Med. Res. Rev. 2017, 37, 52–97. [Google Scholar] [CrossRef] [PubMed]
- Onesto, V.; Di Natale, C.; Profeta, M.; Netti, P.A.; Vecchione, R. Engineered PLGA-PVP/VA based formulations to produce electro-drawn fast biodegradable microneedles for labile biomolecule delivery. Prog. Biomater. 2020, 9, 203–217. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Z.; Wang, Q.; Wu, H.; Zhang, Y.; Nie, X.; Jin, Y. Preparation and biological characteristics of recombinant human bone morphogenetic protein-2-loaded dextran-co-gelatin hydrogel microspheres, in vitro and in vivo studies. Pharmacology 2005, 75, 133–144. [Google Scholar] [CrossRef]
- Karaaslan, M.; Turan, K. In Vitro Characterization of Chitosan-Based Particles as Carrier of Influenza Viral Antigens. Eur. J. Biol. 2018, 77, 1–10. [Google Scholar] [CrossRef]
- Singh, S.; Shukla, N.; Poswal, P.; Tyagi, R.; Kumar, R.; Bari, S.B.; Chakravarty, S.; Kelkar, A.H. Strain Modulated Rise, Reduction, and Resurrection of Ferromagnetic Ordering and Structural Properties in ZnO Nanostructures Due to 1.2 MeV Proton Implantation. J. Alloys Compd. 2025, 1039, 183152. [Google Scholar] [CrossRef]
- Huang, L.; Fan, H. Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B Chem. 2012, 171–172, 1257–1263. [Google Scholar] [CrossRef]
- Yaykaşlı, H.; Eskalen, H.; Kavgacı, M.; Kalmış, H.V. Green synthesis of PVC/ZnO nanoparticles: Microstructure, thermal properties, optical behavior, radiation shielding efficiency, and mechanical performance. Mater. Sci. Eng. B 2026, 323, 118688. [Google Scholar] [CrossRef]
- Elsafi, M.; Abdel-Gawad, E.H.; El-Nahal, M.A.; Sayyed, M.I. Effect of tin oxide particle size on epoxy resin to form new composites against gamma radiation. Sci. Rep. 2024, 14, 27901. [Google Scholar] [CrossRef]
- Alsafi, K.; El-Nahal, M.A.; Al-Saleh, W.M.; Almutairi, H.M.; Abdel-Gawad, E.H.; Elsafi, M. Utilization of waste marble and Bi2O3-NPs as a sustainable replacement for lead materials for radiation shielding applications. Ceramics 2024, 7, 639–651. [Google Scholar] [CrossRef]
- Al-Mubaid, H.; Moazzam, D. A model for mining material properties for radiation shielding. Integr. Comput.-Aided Eng. 2012, 19, 151–163. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Shalaby, T.I.; Antar, A.; Elsafi, M. Experimental study of polypropylene with additives of Bi2O3 nanoparticles as radiation-shielding materials. Polymers 2022, 14, 2253. [Google Scholar] [CrossRef]
- Wang, K.; Hu, J.; Chen, T.; Zhang, W.; Fan, H.; Feng, Y.; Zhao, Z.; Wang, K. Flexible low-melting point radiation shielding materials: Soft elastomers with GaInSnPbBi high-entropy alloy inclusions. Macromol. Mater. Eng. 2021, 306, 2100457. [Google Scholar] [CrossRef]
- Wang, D.; Hu, S.; Kremenakova, D.; Militky, J. Evaluation of the wearing comfort properties for winter used electromagnetic interference shielding sandwich materials. J. Ind. Text. 2023, 53, 15280837231159869. [Google Scholar] [CrossRef]
- Akkas, A.; Tugrul, A.; Buyuk, B.; Addemir, A.; Marsoglu, M.; Agacan, B. Shielding effect of boron carbide aluminium metal matrix composite against gamma and neutron radiation. Acta Phys. Pol. A 2015, 128, B-176–B-180. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z. Progress in ionizing radiation shielding materials. Adv. Eng. Mater. 2024, 26, 2400855. [Google Scholar] [CrossRef]
- Kim, S.C. Performance Evaluation of Radiation-Shielding Materials and Process Technology for Manufacturing Skin Protection Cream. Materials 2023, 16, 3059. [Google Scholar] [CrossRef]
- Tuljittraporn, A.; Yonphan, S.; Chaiphaksa, W.; Kaewkhao, J.; Kothan, S.; Intachai, N.; Kaewjaeng, S.; Johns, J.; Kalkornsurapranee, E. Developing effective gamma and X-ray shielding materials: Thermoplastic natural rubber composites with antimony oxide. Polym. Adv. Technol. 2023, 34, 3818–3825. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; Lee, Y.H.; Horst, A.; Wang, Z.; Chen, D.R.; Sureshkumar, R.; Tang, Y.J. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ. Sci. Technol. 2010, 44, 1484–1489. [Google Scholar] [CrossRef]
- Yan, X.; Xu, X.; Guo, M.; Wang, S.; Gao, S.; Zhu, S.; Rong, R. Synergistic toxicity of zno nanoparticles and dimethoate in mice: Enhancing their biodistribution by synergistic binding of serum albumin and dimethoate to zno nanoparticles. Environ. Toxicol. 2017, 32, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Kannan, G.M.; Vijayaraghavan, R.; Anand, T.; Khanum, F. Nanosized zinc oxide induces toxicity in human lung cells. Int. Sch. Res. Not. 2013, 2013, 316075. [Google Scholar] [CrossRef] [PubMed]
- Waalewijn-Kool, P.L.; Diez Ortiz, M.; Van Gestel, C.A. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology 2012, 21, 1797–1804. [Google Scholar] [CrossRef]
- Alsayed, Z.; Badawi, M.S.; Awad, R.; Thabet, A.A.; El-Khatib, A.M. Study of some γ-ray attenuation parameters for new shielding materials composed of nano ZnO blended with high density polyethylene. Nucl. Technol. Radiat. Prot. 2019, 34, 342–352. [Google Scholar] [CrossRef]
- Yılmaz, E.; Baltas, H.; Kırıs, E.; Ustabas, İ.L.K.E.R.; Cevik, U.Ğ.U.R.; El-Khayatt, A.M. Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy 2011, 38, 2204–2212. [Google Scholar] [CrossRef]
- Sharma, A.; Sayyed, M.I.; Agar, O.; Kaçal, M.R.; Polat, H.; Akman, F. Photon-shielding performance of bismuth oxychloride-filled polyester concretes. Mater. Chem. Phys. 2020, 241, 122330. [Google Scholar] [CrossRef]
- Naseer, K.A.; Marimuthu, K.; Mahmoud, K.A.; Sayyed, M.I. Impact of Bi2O3 modifier concentration on barium–zincborate glasses: Physical, structural, elastic, and radiation-shielding properties. Eur. Phys. J. Plus 2021, 136, 116. [Google Scholar] [CrossRef]
- Alshipli, M.; Altaim, T.A.; Aladailah, M.W.; Oglat, A.A.; Alsenany, S.A.; Tashlykov, O.L.; Abdelaliem, S.M.F.; Marashdeh, M.W.; Banat, R.; Pyltsova, D.O.; et al. High-density polyethylene with ZnO and TiO2 nanoparticle filler: Computational and experimental studies of radiation-protective characteristics of polymers. J. Radiat. Res. Appl. Sci. 2023, 16, 100720. [Google Scholar] [CrossRef]
- Mirji, R.; Lobo, B. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Radiat. Phys. Chem. 2017, 135, 32–44. [Google Scholar] [CrossRef]
- Bianchi, M.; Pegoretti, A.; Fredi, G. An overview of poly (vinyl alcohol) and poly (vinyl pyrrolidone) in pharmaceutical additive manufacturing. J. Vinyl Addit. Technol. 2023, 29, 223–239. [Google Scholar] [CrossRef]
- Alshareef, R.; Marashdeh, M.W.; Almurayshid, M.; Alsuhybani, M. Study of radiation attenuation properties of HDPE/ZnO at energies between 47.5 and 266 keV. Prog. Nucl. Energy 2023, 165, 104909. [Google Scholar] [CrossRef]







| Composites | mg/Tablets | Concentration (wt.%) | Density (g/cm3) | ||||
|---|---|---|---|---|---|---|---|
| Benecel K-4m | Zinc Oxide | Magnesium Stearate | Benecel K-4m | Zinc Oxide | Magnesium Stearate | ||
| S0 | 544.0 | 0.0 | 5.5 | 99.0 | 0.0 | 1.0 | 0.493 |
| S2 | 533.5 | 11.0 | 5.5 | 97.0 | 2.0 | 1.0 | 0.550 |
| S4 | 522.5 | 22.0 | 5.5 | 95.0 | 4.0 | 1.0 | 0.626 |
| S6 | 511.5 | 33.0 | 5.5 | 93.0 | 6.0 | 1.0 | 0.678 |
| Energy (keV) | So | S2 | S4 | S6 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| The. | Exp. | ∆ | The. | Exp. | ∆ | The. | Exp. | ∆ | The. | Exp. | ∆ | |
| 59.5 | 0.096 | 0.072 | −25.32 | 0.121 | 0.095 | −21.28 | 0.153 | 0.109 | −28.79 | 0.183 | 0.131 | −28.82 |
| 661.6 | 0.041 | 0.035 | −15.69 | 0.046 | 0.038 | −16.45 | 0.052 | 0.056 | 8.27 | 0.056 | 0.066 | 17.50 |
| 1173 | 0.031 | 0.028 | −11.62 | 0.035 | 0.031 | −9.97 | 0.040 | 0.036 | −8.56 | 0.043 | 0.039 | −9.75 |
| 1332 | 0.029 | 0.027 | −9.56 | 0.033 | 0.030 | −7.34 | 0.037 | 0.036 | −3.61 | 0.040 | 0.038 | −4.19 |
| Energy (keV) | S0 | S2 | S4 | S6 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| The. | Exp. | ∆ | The. | Exp. | ∆ | The. | Exp. | ∆ | The. | Exp. | ∆ | |
| 59.5 | 0.194 | 0.143 ± 0.003 | −26.37 | 0.220 | 0.173 ± 0.001 | −21.28 | 0.245 | 0.173 ± 0.001 | −29.24 | 0.270 | 0.192 ± 0.001 | −29.03 |
| 661.6 | 0.084 | 0.070 ± 0.004 | −16.87 | 0.084 | 0.070 ± 0.002 | −16.45 | 0.083 | 0.090 ± 0.001 | 7.58 | 0.083 | 0.097 ± 0.001 | 17.16 |
| 1173 | 0.064 | 0.056 ± 0.003 | −12.86 | 0.064 | 0.057 ± 0.002 | −9.97 | 0.063 | 0.058 ± 0.001 | −9.14 | 0.063 | 0.057 ± 0.002 | −9.11 |
| 1332 | 0.060 | 0.053 ± 0.003 | −10.83 | 0.060 | 0.055 ± 0.002 | −7.34 | 0.059 | 0.057 ± 0.001 | −4.22 | 0.059 | 0.057 ± 0.002 | −4.47 |
| Materials | µ/ρ (cm2/g) | Density (g/cm3) | |||
|---|---|---|---|---|---|
| Study Theme | 661.6 keV | 1173 keV | 1332 keV | ||
| S0 (current work) | Experimental | 0.070 | 0.056 | 0.053 | 0.493 |
| S2 (current work) | Experimental | 0.070 | 0.057 | 0.055 | 0.550 |
| S4 (current work) | Experimental | 0.090 | 0.058 | 0.057 | 0.626 |
| S6 (current work) | Experimental | 0.097 | 0.057 | 0.057 | 0.678 |
| HDPE (high density polyethylene) [40] | Experimental | 0.085 | 0.066 | 0.063 | 0.960 |
| 2% ZnO—HDPE [40] | Experimental | 0.0848 | 0.0654 | 0.065 | 1.030 |
| 4% ZnO—HDPE [40] | Experimental | 0.0843 | 0.0653 | 0.066 | 1.070 |
| 6% ZnO—HDPE [40] | Experimental | 0.084 | 0.067 | 0.067 | 1.140 |
| Polyvinylalcohol (PVA) [41] | Calculated | 0.0870 | 0.0626 | 0.0576 | 1.190 |
| Polyvinylpyrrolidone (PVP) [41] | Calculated | 0.0862 | 0.0620 | 0.0571 | 1.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marashdeh, M.W.; Alsalman, A.; Abdulkarim, M. Enhancing Radiation Shielding Properties of Pharmaceutical Polymers Through Zinc Oxide Incorporation: A Study on Gamma Energy Attenuation. Polymers 2025, 17, 2859. https://doi.org/10.3390/polym17212859
Marashdeh MW, Alsalman A, Abdulkarim M. Enhancing Radiation Shielding Properties of Pharmaceutical Polymers Through Zinc Oxide Incorporation: A Study on Gamma Energy Attenuation. Polymers. 2025; 17(21):2859. https://doi.org/10.3390/polym17212859
Chicago/Turabian StyleMarashdeh, Mohammad W., Afnan Alsalman, and Muthanna Abdulkarim. 2025. "Enhancing Radiation Shielding Properties of Pharmaceutical Polymers Through Zinc Oxide Incorporation: A Study on Gamma Energy Attenuation" Polymers 17, no. 21: 2859. https://doi.org/10.3390/polym17212859
APA StyleMarashdeh, M. W., Alsalman, A., & Abdulkarim, M. (2025). Enhancing Radiation Shielding Properties of Pharmaceutical Polymers Through Zinc Oxide Incorporation: A Study on Gamma Energy Attenuation. Polymers, 17(21), 2859. https://doi.org/10.3390/polym17212859

