Characterization and Adsorption Behavior of Newly Synthesized Aminated Cellulose with Jeffamine EDR148 Towards Ni(II), Cu(II), and Pb(II) Heavy Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of 6-Chlorodeoxycellulose
2.3. Amination of 6-Chlorodeoxycellulose with Jeffamine EDR148
2.4. Characterization
2.5. Adsorption Experiments
2.6. Desorption and Reusability Process of Cell-Jef148
3. Results and Discussion
3.1. Synthesis of Aminated Cellulose with Jeffamine EDR148
3.2. Characterization
3.2.1. SEM Analysis
3.2.2. FT-IR Spectra
3.2.3. 13C-MS-Mass-NMR Spectra
3.2.4. X-Ray Spectra
3.2.5. TG Analysis
3.3. Adsorption Behavior of the Modified Cellulose Towards Heavy Metals
3.3.1. Effect of pH Medium on the Adsorption
3.3.2. Effect of Temperature and Contact Time on Adsorption Efficiency
3.3.3. Effect of Adsorbent Dose on the Adsorption Rate
3.3.4. Effect of Metal Ion Concentration on the Adsorption Rate
3.3.5. Adsorption Isotherm Studies
3.3.6. Adsorption Kinetic Studies
3.3.7. Mechanism of Heavy Metal Ion Adsorption
3.3.8. Desorption and Regeneration of Cell-Jef148 Adsorbent
3.3.9. Comparative Studies of Cell-Jef148 with Previous Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMIMCl | N,N-butylmethylimidazolium chloride |
SEM | Scanning electron microscopy |
FT-IR | Fourier transform infrared |
solid-state 13C-NMR | Solid-state 13C-nuclear magnetic resonance spectroscopy (CP/MAS 13C-NMR) |
XRD | X-ray diffraction |
TGA | Thermogravimetric analysis |
Pure-Cell | Cellulose cotton |
Cell-Cl | 6-Chlorodeoxycellulose |
Cell-Jef148 | Aminated cellulose with jeffamine EDR148 |
qe | Adsorption capacity |
Pu | Percent uptake |
References
- Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 2019, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Verma, R.K.; Chopade, R.L.; Pandit, P.P.; Nagar, V.; Aseri, V.; Choudhary, S.K.; Awasthi, G.; Awasthi, K.K. Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms. In The Toxicity of Environmental Pollutants; Dortal, D.J., Oliveiral, D.P.D., Eds.; IntechOpen: Rijeka, Croatia, 2022; pp. 1–19. [Google Scholar]
- Chu, W.-H.; Fang, C.; Deng, Y.; Xu, Z.-X. Intensified Disinfection Amid COVID-19 Pandemic Poses Potential Risks to Water Quality and Safety. Environ. Sci. Technol. 2021, 55, 4084–4086. [Google Scholar] [CrossRef]
- Santos, M.T.; Lopes, P.A. Sludge recovery from industrial wastewater treatment. Sustain. Chem. Pharm. 2022, 29, 100803–100811. [Google Scholar] [CrossRef]
- Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett. 2018, 17, 867–877. [Google Scholar] [CrossRef]
- Mukherjee, A.G.; Renu, K.; Gopalakrishnan, A.V.; Veeraraghavan, V.P.; Vinayagam, S.; Paz-Montelongo, S.; Dey, A.; Vellingiri, B.; George, A.; Madhyastha, H.; et al. Heavy Metal and Metalloid Contamination in Food and Emerging Technologies for Its Detection. Sustainability 2023, 15, 1195. [Google Scholar] [CrossRef]
- Nivetha, N.; Srivarshine, B.; Sowmya, B.; Rajendiran, M.; Saravanan, P.; Rajeshkannan, R.; Rajasimman, M.; Pham, T.H.T.; Shanmugam, V.; Dragoi, E.N. A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere 2023, 312, 137099. [Google Scholar] [CrossRef]
- Elnabi, M.K.A.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Elaty, A.E.A.; et al. Toxicity of heavy metals and recent advances in their removal: A review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef]
- Bera, J.S.; Trivedi, S.B.; Kumar, A.K.S.S.; Chandel, S.; Haldar, S.K. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions. J. Hazard. Mater. 2018, 343, 86–97. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.A.; Tkachev, G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef]
- Izadi, A.; Mohebbi, A.; Amiri, M.; Izadi, N. Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange. Miner. Eng. 2017, 113, 23–35. [Google Scholar] [CrossRef]
- Ya, V.; Martin, N.; Chou, Y.H.; Chen, Y.M.; Choo, K.H.; Chen, S.S.; Li, C.W. Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode. J. Taiwan Inst. Chem. Eng. 2018, 83, 107–114. [Google Scholar] [CrossRef]
- Chu, S.Y.; Feng, X.F.; Liu, C.C.; Wu, H.R.; Liu, X.B. Advances in Chelating Resins for Adsorption of Heavy Metal Ions. Ind. Eng. Chem. Res. 2022, 61, 11309–11328. [Google Scholar] [CrossRef]
- Kim, I.J.; Zhao, W.; Park, J.G.; Meng, Z. Carbon nanotube filter for heavy metal ion adsorption. Ceram. Int. 2021, 47, 33280–33285. [Google Scholar] [CrossRef]
- Li, Y.C.E. Sustainable Biomass Materials for Biomedical Applications. ACS Biomater. Sci. Eng. 2019, 5, 2079–2092. [Google Scholar]
- John, M.J.; Anandjiwala, R.D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Composite 2008, 29, 187–207. [Google Scholar] [CrossRef]
- Eyley, S.; Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014, 6, 7764–7779. [Google Scholar] [CrossRef]
- Missoum, K.; Belgacem, M.; Bras, J. Nanofibrillated cellulose surface modification: A review. Materials 2013, 6, 1745–1766. [Google Scholar] [CrossRef]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, H.; Lin, Z.; Xu, S.; Xie, J.; Zhang, A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 2019, 224, 115022. [Google Scholar] [CrossRef]
- Bai, H.; Li, Z.; Zhang, S.; Wang, W.; Dong, W. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 2018, 200, 468–476. [Google Scholar] [CrossRef]
- Bediako, J.K.; Wei, W.; Yun, Y.-S. Conversion of waste textile cellulose fibers into heavy metal adsorbents. J. Ind. Eng. Chem. 2016, 43, 61–68. [Google Scholar] [CrossRef]
- Trivunac, K.; Mihajlovi, S.; Vukčević, M.V.; Maleti, M.; Peji, B.; Kalijadis, A.; Gruji, A.P. Modified Cellulose-Based Waste for Enhanced Adsorption of Selected Heavy Metals from Wastewater. Polymers 2024, 16, 2610. [Google Scholar] [CrossRef] [PubMed]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.S. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef]
- Jiang, W.; Xing, Y.; Zhang, L.; Guo, X.; Lu, Y.; Yang, M.; Wang, J.; Wei, G. polyethylenimine-modified sugarcane bagasse cellulose as an effective adsorbent for removing Cu(II) from aqueous solution. J. Appl. Polym. Sci. 2021, 138, 49830. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Tilki, S.; Arica, M.Y. Preparation of amine or carboxyl groups modified cellulose beads for removal of uranium (VI) ions from aqueous solutions. Cellulose 2024, 31, 5133–5149. [Google Scholar] [CrossRef]
- Bao-Xiu, Z.; Peng, W.; Tong, Z.; Chun-yun, C.; Jing, S. Preparation and adsorption performance of a cellulosic-adsorbent resin for copper(II). J. Appl. Polym. Sci. 2006, 99, 2951–2956. [Google Scholar] [CrossRef]
- Majdoubi, H.; EL Kaim Billah, R.; Aminul Islam, M.; Nazal, M.K.; Shekhawat, A.; Alrashdi, A.A.; Alberto Lopez-Maldonado, E.; Soulaimani, A.; Tamraoui, Y.; Jugade, R.; et al. An eco-friendly chitosan-diethylaminoethyl cellulose composite: Indepth analysis of lead (II) and arsenic(V) decontamination from water with molecular perspectives. J. Mol. Liq. 2023, 387, 122680. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.W.; Yang, Y.L.; Bai, Z.C.; Xia, L.R.; Wang, M.; Lv, X.L.; Li, L. Removal of Heavy Metal Ions and Anionic Dyes from Aqueous Solutions Using Amide-Functionalized Cellulose-Based Adsorbents. Carbohydr. Polym. 2020, 230, 115619. [Google Scholar] [CrossRef]
- Saravanan, R.; Ravikumar, L. The Use of New Chemically Modified Cellulose for Heavy Metal Ion Adsorption and Antimicrobial Activities. J. Water Resour. Prot. 2015, 7, 530–545. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Wang, L.; James, T.D.; Xiao, H.N.; Zhu, W.H. A glutamic acid-modified cellulose fibrous composite used for the adsorption of heavy metal ions from single and binary solutions. Mater. Chem. Front. 2017, 1, 2317–2323. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; El-Bindary, A.A.; Kouta, E.Y. Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. J. Environ. Chem. Eng. 2017, 5, 3698–3710. [Google Scholar] [CrossRef]
- Sharma, R.K.; Lalita. Synthesis and characterization of graft copolymers of N-Vinyl-2-Pyrrolidone onto guar gum for sorption of Fe2+ and Cr6+ ions. Carbohydr. Polym. 2011, 83, 1929–1936. [Google Scholar] [CrossRef]
- da Silva Filho, E.C.; Santana, S.A.A.; Melo, J.C.P.; Oliveira, F.J.V.E.; Airoldi, C. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J. Therm. Anal. Calorim. 2010, 100, 315–321. [Google Scholar] [CrossRef]
- Silva, E.C.F.; Lima, L.C.B.; Silva, F.C.; Sousa, K.S.; Fonseca, M.G.; Santana, S.A.A. Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohydr. Polym. 2013, 92, 1203–1210. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, C.; Xie, H.; Zhao, Z.k.; Bao, M. Cellulosic poly(ionic liquid)s: Synthesis, characterization and application in the cycloaddition of CO2 to epoxides. RSC Adv. 2015, 5, 44598–44603. [Google Scholar] [CrossRef]
- El-Khouly, A.S.; Takahashi, Y.; Takada, A.; Safaan, A.A.; Kenawy, E.; Hafiz, Y.A. Characterization and thermal stability of cellulose-graft-polyacryloniytrile prepared by using KMnO4/citric acid redox system. J. Appl. Polym. Sci. 2010, 16, 1788–1795. [Google Scholar] [CrossRef]
- El-Khouly, A.S.; Takahashi, Y. Synthesis, Characterization, and Evaluation of the Adsorption Behavior of Cellulose-Graft-Poly(Acrylonitrile-co-Acrylic Acid) and Cellulose-Graft-Poly(Acrylonitrile-co-Styrene) towards Ni(II) and Cu(II) Heavy Metals. Polymers 2024, 16, 445. [Google Scholar] [CrossRef]
- Che, C.; Li, Y.; Zhang, G.; Gao, X.; Hou, X.; He, Y. Nanostructured Ni Powder Synthesized from Non-aqueous Bath. Electrochemistry 2015, 83, 240–243. [Google Scholar] [CrossRef]
- Liangfei Ouyang, L.; Liua, Q.; Xua, C.; Liu, C.; Liang, H. Powder X-ray diffraction detection on a paper-based platform. Talanta 2017, 164, 283–290. [Google Scholar] [CrossRef]
- Kasuya, N.; Suzuki, T.; Sawatari, A. Studies on the thermal properties and structures of deoxyhalocelluloses. J. Wood Sci. 1999, 45, 161–163. [Google Scholar] [CrossRef]
- Da Silva Filho, E.C.; de Melo, J.C.P.; Airoldi, C. Preparation of ethylenediamine—Anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. Carbohydr. Res. 2006, 341, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Van Thi Khuat, K.; Huynh, P.T.; Nguyen, L.N.T.; Do, B.H.; Pham, P.D.; Nguyen, H.D.; Nguyen, H.M.; Thach, U.D. Synthesis, characterization, and antibacterial activity of amino-functionalized microcrystalline cellulose derivatives from cotton fibers. Biomass Convers Biorefinery 2023, 13, 10595–10603. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, M.; Jang, J.; Han, M.; Moon, Y.; Kim, J.; You, J.; Li, S.; Park, T.; Kim, J. Amino-functionalized nanocellulose aerogels for the superior adsorption of CO2 and separation of CO2/CH4 mixture gas. Carbohydr. Polym. 2024, 323, 121393. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, C.; Arnaldos-Pérez, I.; Rosa Barranco, R.; Muñoz-Bonilla, A.; Fernández-García, M. Synthesis and characterization of cellulose derivatives for enhanced antimicrobial activity. Cellulose 2024, 31, 1729–1740. [Google Scholar] [CrossRef]
- Garg, U.; Kaur, M.P.; Jawa, G.K.; Sud, D.; Garg, V.K. Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J. Hazard. Mater. 2008, 154, 1149–1157. [Google Scholar] [CrossRef]
- Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Adsorption of toxic metal ions onto activated carbon study of sorption behavior through characterization and kinetics. Chem. Eng. Process. Process Intensif. 2008, 47, 1269–1280. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, Y.; Sun, D.; Wang, Q.; Zhang, X.; Weeks, B.L.; O’Connor, R.; Huang, X.; Wei, S.; Guo, Z. Cr(vi) Removal by Magnetic Carbon Nanocomposites Derived from Cellulose at Different Carbonization Temperatures. J. Mater. Chem. A 2015, 3, 9817–9825. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Zhang, X.; Liu, W.; Fan, M.; Wang, L. Functionalized Cyclodextrin/Carboxymethyl Cellulose Composite Hydrogel with Double Network Structure for Adsorption of Heavy Metal Ions in Wastewater. Molecules 2024, 29, 5414. [Google Scholar] [CrossRef]
- Jafari, M.; Rajabifar, N.; Amir Rostami, S.; Reza Shahouni, R.; Abbasi, M. Imparting hybrid carbon nanotube and graphene to PVA/chitosan hydrogels for copper ion removal applications. Fuller. Nanotub. Carbon Nanostructures 2024. [Google Scholar] [CrossRef]
- Mai, M.; Khalaf, M.M.; Kawther Al-Amer, K.; Abd El-lateef, H.M. Magnetic Fe3O4 nanocubes coated by SiO2 and TiO2 layers as nanocomposites for Cr (VI) up taking from wastewater. Ceram. Int. 2019, 45, 23548–23560. [Google Scholar]
- Manzoor, K.; Ahmad, M.; Ahmad, S.; Ikram, S. Synthesis, Characterization, Kinetics, and Thermodynamics of EDTA-Modified Chitosan-Carboxymethyl Cellulose as Cu(II) Ion Adsorbent. ACS Omega 2019, 4, 17425–17437. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lu, Y.; Luo, G. Ca(II) Imprinted Chitosan Micro-spheres: An Effective and Green Adsorbent for the Removal of Cu(II), Cd(II) and Pb(II) from Aqueous Solutions. Chem. Eng. J. 2014, 244, 202–208. [Google Scholar] [CrossRef]
- Deghles, A.; Hamed, O.; Azar, M.; Abu Lail, B.; Azzaoui, K.; Abu Obied, A.; Jodeh, S. Cellulose with Bidentate Chelating Functionality: An Adsorbent for Metal Ions from Wastewater. BioResources 2019, 14, 6247–6266. [Google Scholar] [CrossRef]
- Zhang, C.; Su, J.; Zhu, H.; Xiong, J.; Liu, X.; Li, D.; Chen, Y.; Li, Y. The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Adv. 2017, 7, 34182–34191. [Google Scholar] [CrossRef]
- Jilal, I.; El Barkany, S.; Bahari, Z.; Sundman, O.; El Idrissi, A.; Abou-Salama, M.; Romane, A.; Zannagui, C.; Amhamdi, H. New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: Synthesis, characterization and application for Pb (II) and Cu (II) removal. Carbohydr. Polym. 2018, 180, 156–167. [Google Scholar] [CrossRef] [PubMed]
Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | |||||||
---|---|---|---|---|---|---|---|---|---|
Constants | Constants | Constants | |||||||
KL (L/mg) | qm (mg/g) | R2 | KF (L/mg) | n | R2 | KTMg/L | B | R2 | |
Cu(II) | 0.0406 | 952.38 | 0.99795 | 4.953 | 1.301 | 0.97949 | 0.6597 | 136.572 | 0.96604 |
Ni(II) | 0.0307 | 609.76 | 0.99855 | 4.096 | 1.395 | 0.98011 | 0.4719 | 104.245 | 0.95662 |
Pb(II) | 0.0323 | 769.23 | 0.99575 | 4.437 | 1.403 | 0.97785 | 0.6772 | 99.017 | 0.95364 |
Pseudo-First-Order | Pseudo-Second-Order | ||||||
---|---|---|---|---|---|---|---|
Constants | Constants | ||||||
K1 (L/mg) | qe (mg/g) | R2 | Ks (L/mg) | qe (mg/g) | R2 | qe (Exp.) (mg/g) | |
Cu(II) | 0.05262 | 20.2889 | 0.96709 | 8.365 × 10−3 | 497.513 | 0.99994 | 480.3 |
Ni(II) | 0.01519 | 83.5795 | 0.97199 | 4.785 × 10−3 | 450.451 | 0.99996 | 420.4 |
Pb(II) | 0.03047 | 38.2798 | 0.96980 | 5.163 × 10−3 | 487.805 | 0.99990 | 463.2 |
The Adsorbent | Heavy Metal Ion M(II) | Initial Metal Ion Concentration (Ci) | qmax, (mg/g) | References |
---|---|---|---|---|
Cellulose o-pheneylendiamine polymer | Pb(II) | 600 | 406.8 | [54] |
Cyclodextrin/carboxymethyl cellulose composite | Pb(II) Cu(II) | 500 200 | 393.56 158.12 | [49] |
Grafted polyethylenimine (PEI) onto carboxylated microcrystalline cellulose (SA-MCCMV), | Pb(II) | 500 | 357.1 | [55] |
Hydroxyethyl cellulose (HEC)-grafted EDTA | Pb(II) Cu(II) | 400 400 | 190 100 | [56] |
Cellulose–jeffamine EDR148 | Pb(II) Ni(II) CU(II) CU(II) | 500 500 500 200 | 480.3 420.5 471.9 192.6 | Current work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nawah, J.Y.; El-Khouly, A.S. Characterization and Adsorption Behavior of Newly Synthesized Aminated Cellulose with Jeffamine EDR148 Towards Ni(II), Cu(II), and Pb(II) Heavy Metal Ions. Polymers 2025, 17, 255. https://doi.org/10.3390/polym17020255
Al Nawah JY, El-Khouly AS. Characterization and Adsorption Behavior of Newly Synthesized Aminated Cellulose with Jeffamine EDR148 Towards Ni(II), Cu(II), and Pb(II) Heavy Metal Ions. Polymers. 2025; 17(2):255. https://doi.org/10.3390/polym17020255
Chicago/Turabian StyleAl Nawah, Jawaher Y., and Amany S. El-Khouly. 2025. "Characterization and Adsorption Behavior of Newly Synthesized Aminated Cellulose with Jeffamine EDR148 Towards Ni(II), Cu(II), and Pb(II) Heavy Metal Ions" Polymers 17, no. 2: 255. https://doi.org/10.3390/polym17020255
APA StyleAl Nawah, J. Y., & El-Khouly, A. S. (2025). Characterization and Adsorption Behavior of Newly Synthesized Aminated Cellulose with Jeffamine EDR148 Towards Ni(II), Cu(II), and Pb(II) Heavy Metal Ions. Polymers, 17(2), 255. https://doi.org/10.3390/polym17020255