Antioxidant Particleboards Produced from Forest By-Products with Application in the Food Packaging Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Production of the Bio-Adhesives
2.3. Characterization of the Bio-Adhesives
2.3.1. Viscosity and pH
2.3.2. Fourier Transform Infra-Red (FTIR) Spectroscopy
2.3.3. Automated Bonding Evaluation System (ABES) Analysis
2.3.4. Antioxidant Activity
2.3.5. Degree of Cure
2.4. Particleboard Manufacturing and Characterization
2.4.1. Physical-Mechanical Performance
2.4.2. Antioxidant Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Bio-Adhesives
3.2. Physical-Mechanical Evaluation of Particleboards
3.3. Antioxidant Properties of Particleboards
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Kan, M.; Miller, S.A. Environmental Impacts of Plastic Packaging of Food Products. Resour. Conserv. Recycl. 2022, 180, 106156. [Google Scholar] [CrossRef]
- Debeaufort, F. Wood-Based Packaging. In Packaging Materials and Processing for Food, Pharmaceuticals and Cosmetics; Wiley: Hoboken, NJ, USA, 2021; pp. 1–18. [Google Scholar]
- Spirchez, G.C.; Lunguleasa, A.; Ciobanu, V.D. Evaluation of Oak-Specific Consumption, Efficiency, and Losses from an Aesthetic Veneer Factory. Appl. Sci. 2021, 11, 4300. [Google Scholar] [CrossRef]
- Venkateswarlu, P. The Trim-Loss Problem in a Wooden Container Manufacturing Company. J. Manuf. Syst. 2001, 20, 166–176. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative Lignocellulosic Raw Materials in Particleboard Production: A Review. Ind. Crop. Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Mirindi, D. A Review of Particleboard Development and Performance Using Non-Toxic and Biodegradable Adhesives. Int. J. Eng. Trends Technol. 2024, 72, 252–260. [Google Scholar] [CrossRef]
- Zidanes, U.L.; Lorenço, M.S.; da Silva Araujo, E.; Dias, M.C.; Rodrigues, L.L.A.; Dores, B.A.B.; Setter, C.; Júnior, J.B.G.; Tonoli, G.H.D.; Mori, F.A. Substitution of Petrochemical Compounds for Polyphenols of Natural Origin Reinforced with Cellulose Nanofibrils to Formulate Adhesives for Wood Bonding. Environ. Sci. Pollut. Res. 2023, 30, 74426–74440. [Google Scholar] [CrossRef]
- Šernek, M.; Žigon, J. Curing and Adhesive Bond Strength Development in Naturally-Based Adhesives. In Biobased Adhesives: Sources, Characteristics and Applications; Dunky, M., Mittal, K.L., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef]
- de Mello Andrade, J.M.; Fasolo, D. Polyphenol Antioxidants from Natural Sources and Contribution to Health Promotion. In Polyphenols in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 253–265. ISBN 978-0-12-398456-2. [Google Scholar]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Chen, X.; Lan, W.; Xie, J. Natural Phenolic Compounds: Antimicrobial Properties, Antimicrobial Mechanisms, and Potential Utilization in the Preservation of Aquatic Products. Food Chem. 2024, 440, 138198. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2022, 11, 46. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Ahari, H.; Soufiani, S.P. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front. Microbiol. 2021, 12, 657233. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Deng, Y. Latest Advances in Active Materials for Food Packaging and Their Application. Foods 2023, 12, 4055. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.P.; Trinh, B.M.; Tadele, D.T.; Bandara, N.; Mekonnen, T.H. Natural Antioxidant and Antimicrobial Agents and Processing Technologies for the Design of Active Food Packaging Polymers. Polym. Rev. 2023, 63, 961–1013. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Gaikwad, K.K. Natural Antimicrobial and Antioxidant Compounds for Active Food Packaging Applications. Biomass Convers Biorefin 2024, 14, 4419–4440. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Pereira, J.; Ferra, J.; Magalhães, F.D.; Martins, J.M.; Carvalho, L.H. New Cardoon (Cynara cardunculus L.) Particleboards Using Cardoon Leaf Extract and Citric Acid as Bio-Adhesive. Mater. Circ. Econ. 2021, 3, 14. [Google Scholar] [CrossRef]
- Santos, J.; Pereira, J.; Escobar-Avello, D.; Ferreira, I.; Vieira, C.; Magalhães, F.D.; Martins, J.M.; Carvalho, L.H. Grape Canes (Vitis vinifera L.) Applications on Packaging and Particleboard Industry: New Bioadhesive Based on Grape Extracts and Citric Acid. Polymers 2022, 14, 1137. [Google Scholar] [CrossRef]
- Santos, J.; Fernandes, R.A.; Ferreira, N.; Ferreira, I.; Vieira, C.; Magalhães, F.D.; Martins, J.M.; de Carvalho, L.H. New Particleboards for Food-Packaging from Poplar Peeling by-Products Using a Circular Economy Approach. Int. J. Adhes. Adhes. 2024, 129, 103563. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Lopes, S.; Ferreira, N.; Santos, J.; Martins, J.M.; Carvalho, L.H. Binderless Particleboards Obtained 100% from Winery By-Products for the Packaging Industry. Front. Food Sci. Technol. 2024, 4, 1376415. [Google Scholar] [CrossRef]
- Wu, H.; Lei, Y.; Lu, J.; Zhu, R.; Xiao, D.; Jiao, C.; Xia, R.; Zhang, Z.; Shen, G.; Liu, Y.; et al. Effect of Citric Acid Induced Crosslinking on the Structure and Properties of Potato Starch/Chitosan Composite Films. Food Hydrocoll. 2019, 97, 105208. [Google Scholar] [CrossRef]
- Pažarauskaitė, A.; Noriega Fernández, E.; Sone, I.; Sivertsvik, M.; Sharmin, N. Combined Effect of Citric Acid and Polyphenol-Rich Grape Seed Extract towards Bioactive Smart Food Packaging Systems. Polymers 2023, 15, 3118. [Google Scholar] [CrossRef]
- Costa, N.A.; Pereira, J.; Ferra, J.; Cruz, P.; Martins, J.; Magalhães, F.D.; Mendes, A.; Carvalho, L.H. Evaluation of Bonding Performance of Amino Polymers Using ABES. J. Adhes. 2014, 90, 80–88. [Google Scholar] [CrossRef]
- ASTM International D7998-19; Standard Test Method for Measuring the Effect of Temperature on the Cohesive Strength Development of Adhesives Using Lap Shear Bonds under Tensile Loading. ASTM International: West Conshohocken, PA, USA, 2024.
- Szollosi, R.; Szollosi Varga, I. Total Antioxidant Power in Some Species of Labiatae (Adaptation of FRAP Method). Acta Biol. Szeged. 2002, 46, 125–127. [Google Scholar]
- CT14 (CTIMM) NP EN 323; Portuguese Standard—Wood-Based Panels: Determination of Density. Instituto Português da Qualidade: Caparica, Portugal, 2002.
- CT14 (CTIMM) NP EN 322; Portuguese Standard—Wood-Based Panels: Determination of Moisture Content. Instituto Português da Qualidade: Caparica, Portugal, 2002.
- CT14 (CTIMM) NP EN 319; Portuguese Standard—Particleboards and Fiberboards: Determination of Tensile Strength Perpendicular to the Plane of the Board. Instituto Português da Qualidade: Caparica, Portugal, 2002.
- CT14 (CTIMM) NP EN 310; Portuguese Standard—Wood-Based Panels: Determination of Modulus of Elasticity in Bending and of Bending Strength. Instituto Português da Qualidade: Caparica, Portugal, 2002.
- CT14 (CTIMM) NP EN 317; Portuguese Standard—Particleboards and Fiberboards: Determination of Swelling in Thickness after Immersion in Water. Instituto Português da Qualidade: Caparica, Portugal, 2002.
- CT14-NP EN 312; Portuguese Standard—Particleboard Specifications. Instituto Português da Qualidade: Caparica, Portugal, 2009.
- Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef]
- Lee, S.H.; Md Tahir, P.; Lum, W.C.; Tan, L.P.; Bawon, P.; Park, B.-D.; Osman Al Edrus, S.S.; Abdullah, U.H. A Review on Citric Acid as Green Modifying Agent and Binder for Wood. Polymers 2020, 12, 1692. [Google Scholar] [CrossRef]
- Hussin, M.H.; Abd Latif, N.H.; Hamidon, T.S.; Idris, N.N.; Hashim, R.; Appaturi, J.N.; Brosse, N.; Ziegler-Devin, I.; Chrusiel, L.; Fatriasari, W.; et al. Latest Advancements in High-Performance Bio-Based Wood Adhesives: A Critical Review. J. Mater. Res. Technol. 2022, 21, 3909–3946. [Google Scholar] [CrossRef]
- Li, J.; Lei, H.; Xi, X.; Li, C.; Hou, D.; Song, J.; Du, G. A Sustainable Tannin-Citric Acid Wood Adhesive with Favorable Bonding Properties and Water Resistance. Ind. Crops Prod. 2023, 201, 116933. [Google Scholar] [CrossRef]
- Teixeira, D.E.; Pereira, D.D.C.; Nakamura, A.P.D.; Brum, S.S. Adhesivity of Bio-Based Anhydrous Citric Acid, Tannin-Citric Acid and Ricinoleic Acid in the Properties of Formaldehyde-Free Medium Density Particleboard (Mdp). Drv. Ind. 2020, 71, 235–242. [Google Scholar] [CrossRef]
- Widyorini, R.; Umemura, K.; Kemalasari Soraya, D.; Kusuma Dewi, G.; Dwi Nugroho, W. Effect of Citric Acid Content and ExtractivesTreatment on the Manufacturing Process and Properties of Citric Acid-Bonded Salacca Frond Particleboard. Bioresources 2019, 14, 4171–4180. [Google Scholar]
- Prasetiyo, K.W.; Octaviana, L.; Astari, L.; Syamani, F.A.; Achmadi, S.S. Physical-Mechanical Properties and Bonding Mechanism of Corn Stalks Particleboard with Citric Physical-Mechanical Properties and Bonding Mechanism of Corn Stalks Particleboard with Citric Acid Adhesive. J. Ilmu Dan Teknol. Kayu Trop. 2018, 16, 131–140. [Google Scholar]
- Umemura, K.; Sugihara, O.; Kawai, S. Investigation of a New Natural Adhesive Composed of Citric Acid and Sucrose for Particleboard. J. Wood Sci. 2013, 59, 203–208. [Google Scholar] [CrossRef]
- Scharf, A.; Sandberg, D.; Jones, D. The Influence of Chemical Content and Pressing Temperature on the Properties of Citric Acid-Bonded Particleboards from Softwood Sawmilling Residues. Wood Mater. Sci. Eng. 2024, 19, 987–992. [Google Scholar] [CrossRef]
- Santoso, M.; Widyorini, R.; Prayitno, T.A.; Sulistyo, J.; Hamidah, N. Effect of Pressing Temperatures on Bonding Properties of Sucrose-Citric Acid for Nipa Palm Fronds Particleboard. Wood Res. 2020, 65, 747–756. [Google Scholar] [CrossRef]
- Santos, J.; Pereira, J.; Ferreira, N.; Paiva, N.; Ferra, J.; Magalhães, F.D.; Martins, J.M.; Dulyanska, Y.; Carvalho, L.H. Valorisation of Non-Timber by-Products from Maritime Pine (Pinus pinaster, Ait) for Particleboard Production. Ind. Crops Prod. 2021, 168, 113581. [Google Scholar] [CrossRef]
- Santos, J.; Delgado, N.; Fuentes, J.; Fuentealba, C.; Vega-Lara, J.; García, D.E. Exterior Grade Plywood Adhesives Based on Pine Bark Polyphenols and Hexamine. Ind. Crops Prod. 2018, 122, 340–348. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, H.J.; Rafailovich, M.; Sokolov, J. Curing Monitoring of Phenolic Resol Resins via Atomic Force Microscope and Contact Angle. Int. J. Adhes Adhes. 2002, 22, 375–384. [Google Scholar] [CrossRef]
- Peng, C.; Chan, M.N.; Chan, C.K. The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids: Measurements and UNIFAC Predictions. Environ. Sci. Technol. 2001, 35, 4495–4501. [Google Scholar] [CrossRef] [PubMed]
- de Palacios, P.; Fernández, F.G.; García-Iruela, A.; González-Rodrigo, B.; Esteban, L.G. Study of the Influence of the Physical Properties of Particleboard Type P2 on the Internal Bond of Panels Using Artificial Neural Networks. Comput. Electron. Agric. 2018, 155, 142–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Chen, Z.; Ding, C.; Zheng, Q.; Xu, J.; Meng, Q. Synthesis of High-Water-Resistance Lignin-Phenol Resin Adhesive with Furfural as a Crosslinking Agent. Polymers 2020, 12, 2805. [Google Scholar] [CrossRef]
- Milawarni; Nurlaili; Sariadi; Amra, S.; Yassir. Influence of Press Temperature on The Properties of Binderless Particleboard. IOP Conf. Ser. Mater. Sci. Eng. 2019, 536, 012066. [Google Scholar] [CrossRef]
- Hashim, R.; Said, N.; Lamaming, J.; Baskaran, M.; Sulaiman, O.; Sato, M.; Hiziroglu, S.; Sugimoto, T. Influence of Press Temperature on the Properties of Binderless Particleboard Made from Oil Palm Trunk. Mater. Des. 2011, 32, 2520–2525. [Google Scholar] [CrossRef]
- Korkut, S. The Effects of High-Temperature Heat-Treatment on Physical Properties and Surface Roughness of Rowan (Sorbus aucuparia L.) Wood. Wood Res. 2010, 55, 67–78. [Google Scholar]
- Weiland, J.J.; Guyonnet, R. Study of Chemical Modifications and Fungi Degradation of Thermally Modified Wood Using DRIFT Spectroscopy. Holz Als Roh-Und Werkst. 2003, 61, 216–220. [Google Scholar] [CrossRef]
- Lin, C.F.; Karlsson, O.; Jones, D.; Sandberg, D. Bio-Based Adhesive Derived from Citric Acid and Sorbitol for Wood-Composite Manufacture. Wood Mater. Sci. Eng. 2022, 17, 397–399. [Google Scholar] [CrossRef]
Reference | Density (kg m−3) 1 | Moisture Content, MC (%) 1 | Internal Bond Strength, IB (MPa) 1 | Bending Strength, BS (MPa) 1 | Modulus of Elasticity, MOE (MPa) 1 | Thickness Swelling 1 h, TS (%) |
---|---|---|---|---|---|---|
PBCA_0 | 699 ± 31 a | 3.7 ± 0.1 a | 0.25 ± 0.01 a | 5.75 ± 1.37 a | 1620 ± 339 a | i.d. a |
PBCA_25 | 682 ± 28 a | 5.1 ± 0.1 b | 0.31 ± 0.03 b | 8.05 ± 0.98 b | 1715 ± 21 a | 132 ± 5 b |
PBCA_50 | 721 ± 40 a | 4.5 ± 0.2 c | 0.41 ± 0.01 c | 7.73 ± 0.49 b | 1750 ± 339 a | 102 ± 10 c |
PBCA_75 | 723 ± 18 a | 5.0 ± 0.1 b | 0.32 ± 0.02 b | 9.92 ± 0.30 c | 1950 ± 212 a | 85 ± 13 d |
PBCA_100 | 708 ± 41 a | 5.4 ± 0.1 b | 0.33 ± 0.04 b | 8.21 ± 0.33 b | 1645 ± 21 a | 89 ± 8 d |
PB Type P1 * | n.r. | n.r. | 0.31 | 11.5 | n.r. | n.r. |
Reference | Density (kg m−3) 1 | Moisture Content, MC (%) 1 | Internal Bond Strength, IB (MPa) 1 | Bending Strength, BS (MPa) 1 | Modulus of Elasticity, MOE (MPa) 1 | Thickness Swelling 1 h, TS (%) |
---|---|---|---|---|---|---|
PBCA_0 | 703 ± 6 a | 4.3 ± 0.3 a | 0.07 ± 0.01 a | 8.94 ± 1.28 a | 2305 ± 841 a | i.d. a |
PBCA_25 | 703 ± 12 a | 4.4 ± 0.1 a | 0.14 ± 0.03 b | 9.27 ± 1.12 a | 1905 ± 304 a | 175 ± 13 b |
PBCA_50 | 702 ± 5 a | 4.8 ± 0.1 b | 0.19 ± 0.03 c | 8.56 ± 0.76 a | 1925 ± 21 a | 142 ± 5 c |
PBCA_75 | 690 ± 7 a | 5.1 ± 0.1 b | 0.07 ± 0.02 a | 5.59 ± 0.31 b | 1395 ± 7 b | 138 ± 10 c |
PBCA_100 | 698 ± 9 a | 5.2 ± 0.1 b | 0.05 ± 0.01 a | 5.93 ± 0.07 b | 1175 ± 49 b | 138 ± 2 c |
PB Type P1 * | n.r. | n.r. | 0.28 | 10.5 | n.r. | n.r. |
Pressing Temperature | Density (kg m−3) 1 | Moisture Content, MC (%) 1 | Internal Bond Strength, IB (MPa) 1 | Bending Strength, BS (MPa) 1 | Modulus of Elasticity, MOE (MPa) 1 | Thickness Swelling 1 h 1, TS (%) |
---|---|---|---|---|---|---|
160 | 702 ± 5 a | 4.8 ± 0.1 a | 0.19 ± 0.03 ac | 8.56 ± 0.76 a | 1925 ± 21 a | 142 ± 5 a |
180 | 703 ± 3 a | 4.9 ± 0.2 a | 0.17 ± 0.02 a | 9.55 ± 0.23 a | 2080 ± 353 a | 70 ± 3 b |
200 | 694 ± 3 a | 4.8 ± 0.1 a | 0.20 ± 0.01 a | 9.94 ± 1.30 a | 2365 ± 318 a | 38 ± 4 c |
220 | 699 ± 3 a | 4.7 ± 0.2 a | 0.28 ± 0.01 b | 11.30 ± 1.14 b | 2600 ± 141 b | 27 ± 3 c |
PB Type P1 * | n.r. | n.r. | 0.28 | 10.5 | n.r. | n.r. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, R.A.; Ferreira, N.; Lopes, S.; Freitas, B.; Santos, J.; Martins, J.M.; Carvalho, L.H. Antioxidant Particleboards Produced from Forest By-Products with Application in the Food Packaging Industry. Polymers 2025, 17, 216. https://doi.org/10.3390/polym17020216
Fernandes RA, Ferreira N, Lopes S, Freitas B, Santos J, Martins JM, Carvalho LH. Antioxidant Particleboards Produced from Forest By-Products with Application in the Food Packaging Industry. Polymers. 2025; 17(2):216. https://doi.org/10.3390/polym17020216
Chicago/Turabian StyleFernandes, Raquel A., Nuno Ferreira, Sandro Lopes, Beatriz Freitas, Jorge Santos, Jorge M. Martins, and Luisa H. Carvalho. 2025. "Antioxidant Particleboards Produced from Forest By-Products with Application in the Food Packaging Industry" Polymers 17, no. 2: 216. https://doi.org/10.3390/polym17020216
APA StyleFernandes, R. A., Ferreira, N., Lopes, S., Freitas, B., Santos, J., Martins, J. M., & Carvalho, L. H. (2025). Antioxidant Particleboards Produced from Forest By-Products with Application in the Food Packaging Industry. Polymers, 17(2), 216. https://doi.org/10.3390/polym17020216