Evaluation of Fitting Accuracy of Light- and Auto-Polymerizing Reline Materials Using Three-Dimensional Measurement Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fitting Accuracy Test on the Simple Edentulous Model
2.2.1. Sample Preparation for Fitting Accuracy Test
2.2.2. Gap Measurement Between Master Model and Relined Denture Base
2.3. Three-Dimensional Comparison of Relined RPD
2.3.1. Preparation of Experimental RPD and Relining
2.3.2. Aquation and Comparison of 3D Data
2.4. Statistical Analysis
3. Results
3.1. Gap Thickness in the Fitting Accuracy Test
3.2. Displacement and RMS Values in the 3D Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaparathna, N.; Hettiarachchi, R.M.; Tadakamadla, S.K.; Love, R.; Robb, N.D.; Abuzar, M. Impact of Removable Partial Dentures on Masticatory Performance in Partial Edentulism: A Systematic Review. Int. J. Prosthodont. 2024, 37, 327–338. [Google Scholar] [CrossRef]
- Chen, J.; Ahmad, R.; Li, W.; Swain, M.; Li, Q. Biomechanics of oral mucosa. J. R. Soc. Interface 2015, 12, 20150325. [Google Scholar] [CrossRef] [PubMed]
- Steinmassl, P.A.; Steinmassl, O.; Kraus, G.; Dumfahrt, H.; Grunert, I. Shortcomings of prosthodontic rehabilitation of patients living in long-term care facilities. J. Oral Rehabil. 2016, 43, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Albazroun, Z.; Alabdullatif, A.; Aldehaileb, S.; Alhalimi, F.; Alshahrani, F.A.; Khan, S.Q.; Fouda, S.M.; AlRumaih, H.S.; Gad, M.M. Bond Strength of Nanocomposite Hard Liner to CAD-CAM Milled, 3D Printed, and Conventionally Fabricated Denture Base Resins. Dent. J. 2024, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Leles, C.R.; Machado, A.L.; Vergani, C.E.; Giampaolo, E.T.; Pavarina, A.C. Bonding strength between a hard chairside reline resin and a denture base material as influenced by surface treatment. J. Oral Rehabil. 2001, 28, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Shiga, H.; Terada, Y.; Ikebe, K.; Akagawa, Y.; Hirai, T.; Inoue, H. Guideline for Denture Relining. Prosthodont. Res. Pract. 2007, 6, 209–216. [Google Scholar] [CrossRef]
- Kern, M.; Wagner, B. Periodontal findings in patients 10 years after insertion of removable partial dentures. J. Oral Rehabil. 2001, 28, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.T.; Powers, J.M. In vitro properties of light-polymerized reline materials. Int. J. Prosthodont. 1991, 4, 445–448. [Google Scholar]
- Murata, H.; Seo, R.S.; Hamada, T.; Polyzois, G.L.; Frangou, M.J. Dynamic mechanical properties of hard, direct denture reline resins. J. Prosthet. Dent. 2007, 98, 319–326. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.B.; Ramos, V., Jr.; Dickinson, D.P. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology. J. Prosthodont. 2019, 28, 428–435. [Google Scholar] [CrossRef]
- Schiller, S.; Rustemeier, E.; Kraus, D.; Stark, H.; Muller, F.; Utz, K.H. Misfit of Complete Maxillary Dentures’ Posterior Palatal Seal following Polymerisation with Four Different Autopolymerising Resins: An In Vitro Study. Materials 2022, 15, 5285. [Google Scholar] [CrossRef] [PubMed]
- May, L.W.; John, J.; Seong, L.G.; Abidin, Z.Z.; Ibrahim, N.; Danaee, M.; Mohd, N.R. Comparison of cooling methods on denture base adaptation of rapid heat-cured acrylic using a three-dimensional superimposition technique. J. Indian Prosthodont. Soc. 2021, 21, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Yoshidome, K.; Torii, M.; Kawamura, N.; Shimpo, H.; Ohkubo, C. Trueness and fitting accuracy of maxillary 3D printed complete dentures. J. Prosthodont. Res. 2021, 65, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Wu, S.; Qian, C.; Sun, J. Suitability and Trueness of the Removable Partial Denture Framework Fabricating by Polyether Ether Ketone with CAD-CAM Technology. Polymers 2024, 16, 1119. [Google Scholar] [CrossRef] [PubMed]
- Naka, O.; Kamalakidis, S.N.; Anastassiadou, V. The Impact of Current Fabrication Methods on the Fit Accuracy of Removable Partial Dentures: A Systematic Review and Meta-Analysis. Appl. Sci. 2024, 14, 11034. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers 2022, 14, 4615. [Google Scholar] [CrossRef] [PubMed]
- Wada, J.; Fueki, K.; Yatabe, M.; Takahashi, H.; Wakabayashi, N. A comparison of the fitting accuracy of thermoplastic denture base resins used in non-metal clasp dentures to a conventional heat-cured acrylic resin. Acta Odontol. Scand. 2015, 73, 33–37. [Google Scholar] [CrossRef]
- Sadamori, S.; Siswomihardjo, W.; Kameda, K.; Saito, A.; Hamada, T. Dimensional changes of relined denture bases with heat-cured, microwave-activated, autopolymerizing, and visible light-cured resins. A laboratory study. Aust. Dent. J. 1995, 40, 322–326. [Google Scholar] [CrossRef]
- Kim, Y.; Michalakis, K.X.; Hirayama, H. Effect of relining method on dimensional accuracy of posterior palatal seal. An in vitro study. J. Prosthodont. 2008, 17, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Wada, J.; Arai, Y.; Hayama, H.; Ishioka, Y.; Kim, E.Y.; Kazama, R.; Toyoshima, Y.; Wakabayashi, N. Effect of abutment tooth location on the accuracy of digital impressions obtained using an intraoral scanner for removable partial dentures. J. Prosthodont. Res. 2023, 67, 531–538. [Google Scholar] [CrossRef]
- Matsuno, H.; Wada, J.; Murakami, N.; Takakusaki, K.; Nagayama, T.; Manabe, K.; Nomura, Y.; Koyama, S.; Mouri, Y.; Li, B.; et al. Evaluation of hypermobile teeth deviation during impression taking in a partially edentulous dental arch: An in vitro study comparing digital and conventional impression techniques. J. Prosthodont. Res. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Luthardt, R.G.; Koch, R.; Rudolph, H.; Walter, M.H. Qualitative computer aided evaluation of dental impressions in vivo. Dent. Mater. 2006, 22, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Jagger, R.G.; Milward, P.J.; Jagger, D.C.; Vowles, R.W. Accuracy of adaptation of thermoformed poly(methyl methacrylate). J. Oral Rehabil. 2003, 30, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.S.; May, K.B. Two-stage technique for optimum fit and stability of light-polymerized record bases. J. Prosthet. Dent. 2008, 99, 410–411. [Google Scholar] [CrossRef]
- Wolff, A.; Gadre, A.; Begleiter, A.; Moskona, D.; Cardash, H. Correlation between patient satisfaction with complete dentures and denture quality, oral condition, and flow rate of submandibular/sublingual salivary glands. Int. J. Prosthodont. 2003, 16, 45–48. [Google Scholar] [PubMed]
- Okuyama, Y.; Shiraishi, T.; Yoshida, K.; Kurogi, T.; Watanabe, I.; Murata, H. Influence of composition and powder/liquid ratio on setting characteristics and mechanical properties of autopolymerized hard direct denture reline resins based on methyl methacrylate and ethylene glycol dimethacrylate. Dent. Mater. J. 2014, 33, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Maruo, Y.; Irie, M.; Nishigawa, G.; Oka, M.; Minagi, S.; Suzuki, K. Modified direct relining method produces an accurate adaptation of denture. Dent. Mater. J. 2005, 24, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, R.D.; Mansueto, M.A.; Ackerman, N.A.; Jones, R.E. Evaluation of mechanical and thermal properties of commonly used denture base resins. J. Prosthodont. 2004, 13, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.M.S.N.; Giampaolo, E.T.; Pavarina, A.C.; Machado, A.L.; Erxleben, J.; Vergani, C.E. Exothermic Behavior, Degree of Conversion, and Viscoelastic Properties of Experimental and Commercially Available Hard Chairside Reline Resins. J. Appl. Polym. Sci. 2011, 122, 1669–1676. [Google Scholar] [CrossRef]
- Vogelwaid, J.; Bayer, M.; Walz, M.; Kutuzova, L.; Kandelbauer, A.; Jacob, T. Process Optimization of the Morphological Properties of Epoxy Resin Molding Compounds Using Response Surface Design. Polymers 2024, 16, 1102. [Google Scholar] [CrossRef]
Material | Code | Product and Manufacturer | Powder | Liquid |
---|---|---|---|---|
Light-polymerizing reline material | LP | Hikari-liner, Tokuyama | Polyethyl methacrylate, camphorquinone, coloring material, etc. | Methacrylate monomers, dimethacrylate monomers, etc. |
Auto-polymerizing reline material | AP | Rebase III, To-kuyama | Polyethyl methacrylate, benzoyl peroxide, etc. | Methacrylate monomers, dimethacrylate monomers, etc. |
Measurement Area | Material | Mean | SD | Median | IQR |
---|---|---|---|---|---|
Buccal | LP | 179.8 | 43.1 | 172.1 | 46.8 |
AP | 131.9 | 29.0 | 123.7 | 41.5 | |
Top | LP | 311.7 | 67.9 | 301.7 | 99.8 |
AP | 232.6 | 45.6 | 247.3 | 75.2 | |
Lingual | LP | 182.3 | 54.0 | 163.8 | 67.7 |
AP | 140.3 | 23.4 | 145.4 | 31.4 |
Measurement Area | Material | Displacement | RMS | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Median | IQR | Mean | SD | Median | IQR | ||
Buccal | LP | 15.6 | 150.0 | −36.0 | 238.2 | 164.1 | 58.7 | 163.3 | 85.1 |
AP | 20.9 | 125.5 | 16.4 | 146.1 | 124.2 | 65.4 | 119.7 | 108.6 | |
Top | LP | −24.6 | 113.7 | −75.3 | 213.7 | 123.5 | 20.4 | 123.3 | 16.4 |
AP | −4.3 | 76.7 | −13.5 | 124.0 | 87.5 | 19.2 | 90.5 | 25.0 | |
Lingual | LP | 10.5 | 131.6 | 32.2 | 200.1 | 160.3 | 57.9 | 160.2 | 84.9 |
AP | 7.6 | 109.7 | 5.4 | 84.1 | 119.3 | 60.8 | 105.3 | 93.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utsumi, M.; Murakami, N.; Yamazaki, T.; Hirata, A.; Komine, K.; Li, B.; Takakusaki, K.; Wada, J.; Wakabayashi, N. Evaluation of Fitting Accuracy of Light- and Auto-Polymerizing Reline Materials Using Three-Dimensional Measurement Techniques. Polymers 2025, 17, 201. https://doi.org/10.3390/polym17020201
Utsumi M, Murakami N, Yamazaki T, Hirata A, Komine K, Li B, Takakusaki K, Wada J, Wakabayashi N. Evaluation of Fitting Accuracy of Light- and Auto-Polymerizing Reline Materials Using Three-Dimensional Measurement Techniques. Polymers. 2025; 17(2):201. https://doi.org/10.3390/polym17020201
Chicago/Turabian StyleUtsumi, Miona, Natsuko Murakami, Toshiki Yamazaki, Asuka Hirata, Kohei Komine, Bin Li, Kensuke Takakusaki, Junichiro Wada, and Noriyuki Wakabayashi. 2025. "Evaluation of Fitting Accuracy of Light- and Auto-Polymerizing Reline Materials Using Three-Dimensional Measurement Techniques" Polymers 17, no. 2: 201. https://doi.org/10.3390/polym17020201
APA StyleUtsumi, M., Murakami, N., Yamazaki, T., Hirata, A., Komine, K., Li, B., Takakusaki, K., Wada, J., & Wakabayashi, N. (2025). Evaluation of Fitting Accuracy of Light- and Auto-Polymerizing Reline Materials Using Three-Dimensional Measurement Techniques. Polymers, 17(2), 201. https://doi.org/10.3390/polym17020201