Processing of Pineapple Leaf Fibers for the Production of Oxidized Micro-/Nanofibrillated Cellulose
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PALF Extraction and Preprocessing
2.3. Organosolv Pulping and Optional Bleaching
2.4. Pineapple Leaf and Fiber Morphology Analyses
2.5. Micro-/Nanofibrillated Cellulose (MNFC)
2.6. Characterization
3. Results and Discussion
3.1. Organosolv Pulping and Hydrogen Peroxide Bleaching
3.2. Morphology of MNFC from PALF
3.3. Chemical and Structural Features of MNFC from PALF
3.4. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardes, G.P.; de Prá Andrade, M.; Poletto, M. Effect of alkaline treatment on the thermal stability, degradation kinetics, and thermodynamic parameters of pineapple crown fibres. J. Mater. Res. Technol. 2023, 23, 64–76. [Google Scholar] [CrossRef]
- de Andrade Maia, F.; Fasolin, L.H. Recovery of bioactive compounds from pineapple waste through high-pressure technologies. J. Supercrit. Fluids 2025, 218, 106455. [Google Scholar] [CrossRef]
- Phiri, R.; Rangappa, S.M.; Siengchin, S. Agro-waste for renewable and sustainable green production: A review. J. Clean. Prod. 2024, 434, 139989. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Singh, T.A.; Singh, N.J.; Shadangi, K.P.; Srivastava, R.K.; Singh, A.K.; Chandel, A.K.; Pareek, N.; Vivekanand, V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Bioresour. Technol. 2022, 351, 127085. [Google Scholar] [CrossRef] [PubMed]
- Tofani, G.; Jasiukaitytė-Grojzdek, E.; Grilc, M.; Likozar, B. Organosolv biorefinery: Resource-based process optimisation, pilot technology scale-up and economics. Green Chem. 2024, 26, 186–201. [Google Scholar] [CrossRef]
- Araya-Chavarría, K.; Rojas, R.; Ramírez-Amador, K.; Sulbarán-Rangel, B.; Rojas, O.; Esquivel-Alfaro, M. Cellulose nanofibers as functional biomaterial from pineapple stubbles via TEMPO oxidation and mechanical process. Waste Biomass Valorization 2022, 13, 1749–1758. [Google Scholar] [CrossRef]
- Tanpichai, S.; Witayakran, S. All-cellulose composite laminates prepared from pineapple leaf fibers treated with steam explosion and alkaline treatment. J. Reinf. Plast. Compos. 2017, 36, 1146–1155. [Google Scholar] [CrossRef]
- Gao, T.M.; Huang, M.F.; Li, P.W.; Han, Z.P.; Xie, R.H.; Chen, H.L. Preparation and characterization nano-cellulose and its surface modification by Silane Coupling Agent. Appl. Mech. Mater. 2012, 217, 260–263. [Google Scholar] [CrossRef]
- Shih, Y.-F.; Chou, M.-Y.; Chang, W.-C.; Lian, H.-Y.; Chen, C.-M. Completely biodegradable composites reinforced by the cellulose nanofibers of pineapple leaves modified by eco-friendly methods. J. Polym. Res. 2017, 24, 209. [Google Scholar] [CrossRef]
- Cherian, B.M.; Leão, A.L.; de Souza, S.F.; Costa, L.M.M.; de Olyveira, G.M.; Kottaisamy, M.; Nagarajan, E.; Thomas, S. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr. Polym. 2011, 86, 1790–1798. [Google Scholar] [CrossRef]
- Abraham, E.; Deepa, B.; Pothan, L.A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475. [Google Scholar] [CrossRef]
- Li, L.; Lee, S.; Lee, H.L.; Youn, H.J. Hydrogen peroxide bleaching of hardwood kraft pulp with adsorbed birch xylan and its effect on paper properties. BioResources 2011, 6, 721–736. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour. Technol. 2020, 299, 122695. [Google Scholar] [CrossRef]
- Sulbarán-Rangel, B.; Jouvenson, J.; Barrera-Rojas, J.; Palacios-Hinestroza, H.; Gurubel Tun, K.J. Valorization of Water Hyacinth After Organosolv Fractionation: Cellulose Fiber and Anaerobic Digestion. Waste Biomass Valorization 2024, 15, 1411–1421. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Lobato-Peralta, D.R.; Duque-Brito, E.; Villafán-Vidales, H.I.; Longoria, A.; Sebastian, P.J.; Cuentas-Gallegos, A.K.; Arancibia-Bulnes, C.A.; Okoye, P.U. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 2021, 293, 126123. [Google Scholar] [CrossRef]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustain. Energy Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- Madhu, R.; Periasamy, A.P.; Schlee, P.; Hérou, S.; Titirici, M.-M. Lignin: A sustainable precursor for nanostructured carbon materials for supercapacitors. Carbon 2023, 207, 172–197. [Google Scholar] [CrossRef]
- Kugge, C. Lignocellulose Fractionation—Pulping, Organosolv and Pretreatment Processes. In Encyclopedia of Green Chemistry; First Edition; Török, B., Ed.; Elsevier: Oxford, UK, 2025; pp. 89–104. [Google Scholar]
- Li, X.; Xia, Y.; Hu, X.; Liu, Q.; Li, W.; Yan, L.; Ma, L. Revealing the structure and distribution changes of corn stalk lignin during the Organosolv Pretreatment. Ind. Crops Prod. 2023, 201, 116896. [Google Scholar] [CrossRef]
- Sulbarán-Rangel, B.; Alarcón Aguirre, J.S.; Breton-Deval, L.; del Real-Olvera, J.; Gurubel Tun, K.J. Improvement of Anaerobic Digestion of Hydrolysed Corncob Waste by Organosolv Pretreatment for Biogas Production. Appl. Sci. 2020, 10, 2785. [Google Scholar] [CrossRef]
- Nunes, J.S.; Padilha, C.E.d.A.; Araújo, B.M.C.d.; Paiva, W.K.V.d.; Gonçalves, L.C.T.d.C.; Oliveira, H.N.M.d.; Galvão, J.A.E.R.; Guimarães, K.G.; Rios, N.S.; Araújo, D.A.M.d. Production of ethanol, phenolic acids, and hyaluronic acid after fractionation of sugarcane straw using organosolv pretreatment. Ind. Crops Prod. 2024, 220, 119283. [Google Scholar] [CrossRef]
- Hernández, J.; Romero, V.H.; Escalante, A.; Toriz, G.; Rojas, O.; Sulbarán-Rangel, B. Agave tequilana bagasse as source of cellulose nanocrystals via organosolv treatment. BioResources 2018, 13, 3603–3614. [Google Scholar] [CrossRef]
- Chaudhary, U.; Malik, S.; Rana, V.; Joshi, G. Bamboo in the pulp, paper and allied industries. Adv. Bamboo Sci. 2024, 7, 100069. [Google Scholar] [CrossRef]
- Laftah, W.A.; Rahaman, W.A.W.A. Chemical pulping of waste pineapple leaves fiber for kraft paper production. J. Mater. Res. Technol. 2015, 4, 254–261. [Google Scholar] [CrossRef]
- Roslan, Y.I.N.B.; Soloi, S.; Palle, I. Sustainable paper from agricultural waste: A study on pineaple leaf fibre using organosolv pulping. Borneo Sci. J. 2025, 46, 1–10. [Google Scholar] [CrossRef]
- Fernandes Pereira, P.H.; Ornaghi, H.L., Jr.; Arantes, V.; Hilario Cioffi, M.O. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr. Res. 2021, 499, 108227. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Lima, L.B.; Santos Carmo, S.K.; da Silva Neto, J.M.; Honorario da Silva, F.L. Pretreatment strategies for optimizing the lignocellulosic fractionation of pineapple peel residual biomass for energy purposes. Química Nova 2024, 48, e-20250030, 1–6. [Google Scholar] [CrossRef]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.; Haagenson, D.; Wiesenborn, D.P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- Do, N.H.; Truong, B.Y.; Nguyen, P.T.; Le, K.A.; Duong, H.M.; Le, P.K. Composite aerogels of TEMPO-oxidized pineapple leaf pulp and chitosan for dyes removal. Sep. Purif. Technol. 2022, 283, 120200. [Google Scholar] [CrossRef]
- Standard 16065-2:2014; Pulps—Determination of Fibre Length by Automated Optical Analysis—Part 2: Unpolarized Light Method. ISO: Geneva, Switzerland, 2014.
- Saito, T.; Nishiyama, Y.; Putaux, J.-L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691. [Google Scholar] [CrossRef]
- Aguado, R.; Tarrés, Q.; Pèlach, M.À.; Mutjé, P.; de la Fuente, E.; Sanchez-Salvador, J.L.; Negro, C.; Delgado-Aguilar, M. Micro-and nanofibrillated cellulose from annual plant-sourced fibers: Comparison between enzymatic hydrolysis and mechanical refining. Nanomaterials 2022, 12, 1612. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Martin, A., Jr.; Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Saito, T.; Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 2004, 5, 1983–1989. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-González, D.; Paredes-Martínez, O.E.; Martínez, M.F.; Moreno, I. Comparison of fiber extraction methods in leaves from different strata in pineapple MD2 plants. Bioagro 2025, 37, 67–78. [Google Scholar] [CrossRef]
- Mondal, S.; Nageshkumar, T.; Nayak, L.; Shrivastava, P.; Jagadale, M.; Shambhu, V. Mechanization in pineapple leaf fibre extraction. J. AgriSearch 2023, 10, 191–195. [Google Scholar]
- Todkar, S.S.; Patil, S.A. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos. Part B Eng. 2019, 174, 106927. [Google Scholar] [CrossRef]
- Mondylaksita, K.; Ferreira, J.A.; Millati, R.; Budhijanto, W.; Niklasson, C.; Taherzadeh, M.J. Recovery of high purity lignin and digestible cellulose from oil palm empty fruit bunch using low acid-catalyzed organosolv pretreatment. Agronomy 2020, 10, 674. [Google Scholar] [CrossRef]
- Zhou, Z.; Lei, F.; Li, P.; Jiang, J. Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol. Bioeng. 2018, 115, 2683–2702. [Google Scholar] [CrossRef]
- Li, T.; Takkellapati, S. The current and emerging sources of technical lignins and their applications. Biofuels Bioprod. Biorefining 2018, 12, 756–787. [Google Scholar] [CrossRef]
- Wuorimaa, A.; Jokela, R.; Aksela, R. Recent developments in the stabilization of hydrogen peroxide bleaching of pulps: An overview. Nord. Pulp Pap. Res. J. 2006, 21, 435–443. [Google Scholar] [CrossRef]
- Goto, T.; Zaccaron, S.; Hettegger, H.; Bischof, R.H.; Fackler, K.; Potthast, A.; Rosenau, T. Evaluating chelating agents and their effects on cellulosic pulps during P-stage bleaching. Part 1: Analytical method development. Cellulose 2023, 30, 3887–3900. [Google Scholar] [CrossRef]
- Bhardwaj, N.K.; Nguyen, K. Charge aspects of hydrogen peroxide bleached de-inked pulps. Colloids Surf. A Physicochem. Eng. Asp. 2005, 262, 232–237. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, J.; Ma, Y.; Dong, X.; Wang, Y.; Huang, M. Fiber properties of de-inked old newspaper pulp after bleaching with hydrogen peroxide. BioResources 2015, 10, 1857–1868. [Google Scholar] [CrossRef]
- Xu, D.; He, S.; Leng, W.; Chen, Y.; Quan, H. Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering. Forests 2025, 16, 964. [Google Scholar] [CrossRef]
- Kumar, R.; Zambrano, F.; Peszlen, I.; Venditti, R.; Pawlak, J.; Jameel, H.; Gonzalez, R. High-performance sustainable tissue paper from agricultural residue: A case study on fique fibers from Colombia. Cellulose 2022, 29, 6907–6924. [Google Scholar] [CrossRef]
- Ferdous, T. Morphological and Chemical Characteristics of Different Non-Wood Species and Their Effect on Pulping. Master’s Thesis, University of Dhaka, Dhaka, Bangladesh, 2021. [Google Scholar]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- Balea, A.; Monte, M.C.; Fuente, E.; Sanchez-Salvador, J.L.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M.; Negro, C. Fit-for-use nanofibrillated cellulose from recovered paper. Nanomaterials 2023, 13, 2536. [Google Scholar] [CrossRef] [PubMed]
- Balea, A.; Fuente, E.; Tarrés, Q.; Pèlach, M.À.; Mutjé, P.; Delgado-Aguilar, M.; Blanco, A.; Negro, C. Influence of pretreatment and mechanical nanofibrillation energy on properties of nanofibers from Aspen cellulose. Cellulose 2021, 28, 9187–9206. [Google Scholar] [CrossRef]
- Patiño-Masó, J.; Serra-Parareda, F.; Tarrés, Q.; Mutjé, P.; Espinach, F.; Delgado-Aguilar, M. TEMPO-oxidized cellulose nanofibers: A potential bio-based superabsorbent for diaper production. Nanomaterials 2019, 9, 1271. [Google Scholar] [CrossRef]
- Moon, R.; Johnston, L.; Land-Hensdal, C.; Batchelor, W. Perspectives on cellulose nanofibril size measurement using scanning electron microscopy. Cellulose 2025, 32, 2793–2810. [Google Scholar] [CrossRef]
- ISO/TS 20477: 2017; Nanotechnologies—Standard Terms and Their Definition for Cellulose Nanomaterial. International Organization for Standardization: Geneva, Switzerland, 2017.
- Saha, S.; Das, B.; Ray, P.; Pandey, S.; Goswami, K. Infrared spectra of raw and chemically modified pineapple leaf fiber (Annanus comosus). J. Appl. Polym. Sci. 1991, 43, 1885–1890. [Google Scholar] [CrossRef]
- Ru, B.; Wang, S.; Dai, G.; Zhang, L. Effect of torrefaction on biomass physicochemical characteristics and the resulting pyrolysis behavior. Energy Fuels 2015, 29, 5865–5874. [Google Scholar] [CrossRef]
- Arcari, M.; Zuccarella, E.; Axelrod, R.; Adamcik, J.; Sánchez-Ferrer, A.; Mezzenga, R.; Nyström, G. Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density. Biomacromolecules 2019, 20, 1288–1296. [Google Scholar] [CrossRef]
- Giraldo Isaza, L.; Mortha, G.; Marlin, N.; Molton, F.; Duboc, C. ClO2-mediated oxidation of the TEMPO radical: Fundamental considerations of the catalytic system for the oxidation of cellulose fibers. Molecules 2023, 28, 6631. [Google Scholar] [CrossRef]
- Patankar, S.C.; Liu, L.-Y.; Ji, L.; Ayakar, S.; Yadav, V.; Renneckar, S. Isolation of phenolic monomers from kraft lignin using a magnetically recyclable TEMPO nanocatalyst. Green Chem. 2019, 21, 785–791. [Google Scholar] [CrossRef]
- Xu, H.; Sanchez-Salvador, J.L.; Blanco, A.; Balea, A.; Negro, C. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydr. Polym. 2023, 319, 121168. [Google Scholar] [CrossRef]
- Nair, L.G.; Agrawal, K.; Verma, P. Organosolv pretreatment: An in-depth purview of mechanics of the system. Bioresour. Bioprocess. 2023, 10, 50. [Google Scholar] [CrossRef]
- Fujisawa, S.; Okita, Y.; Fukuzumi, H.; Saito, T.; Isogai, A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr. Polym. 2011, 84, 579–583. [Google Scholar] [CrossRef]
- Fitriani, F.; Aprilia, S.; Arahman, N.; Bilad, M.R.; Amin, A.; Huda, N.; Roslan, J. Isolation and characterization of nanocrystalline cellulose isolated from pineapple crown leaf fiber agricultural wastes using acid hydrolysis. Polymers 2021, 13, 4188. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- French, A. How crystalline is my cellulose specimen? Probing the limits of X-ray diffraction. BioResources 2022, 17, 5557. [Google Scholar] [CrossRef]
- Frone, A.N.; Panaitescu, D.M.; Donescu, D.; Spataru, C.I.; Radovici, C.; Trusca, R.; Somoghi, R. Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 2011, 6, 487–512. [Google Scholar] [CrossRef]
- Shih, Y.-F.; Kotharangannagari, V.K.; Tsou, T.-C. Development of eco-friendly modified cellulose nanofiber reinforced polystyrene nanocomposites: Thermal, mechanical, and optical properties. J. Polym. Res. 2020, 27, 181. [Google Scholar] [CrossRef]
- Baloyi, R.B.; Sithole, B.B.; Chunilall, V. Physicochemical Properties of Cellulose Nanocrystals Extracted from Postconsumer Polyester/Cotton-Blended Fabrics and Their Effects on PVA Composite Films. Polymers 2024, 16, 1495. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Khass, T.M.; Mostafa, M.E. Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques. Biomass Convers. Biorefinery 2024, 14, 17779–17803. [Google Scholar] [CrossRef]
- Moya Roque, R.; Muñoz-Acosta, F.; Soto, R.; Mata Segreda, J.F. An anatomical comparison between bunch and fruit of oil palm with pineapple leaf and three woods from plantations in Costa Rica. J. Oil Palm Res. 2013, 25, 38–148. [Google Scholar]
- Fukuzumi, H.; Saito, T.; Okita, Y.; Isogai, A. Thermal stabilization of TEMPO-oxidized cellulose. Polym. Degrad. Stab. 2010, 95, 1502–1508. [Google Scholar] [CrossRef]
- Lichtenstein, K.; Lavoine, N. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polym. Degrad. Stab. 2017, 146, 53–60. [Google Scholar] [CrossRef]
- Hiraoki, R.; Ono, Y.; Saito, T.; Isogai, A. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 2015, 16, 675–681. [Google Scholar] [CrossRef]
- Lavoine, N.; Bras, J.; Saito, T.; Isogai, A. Improvement of the thermal stability of tempo-oxidized cellulose nanofibrils by heat-induced conversion of ionic bonds to amide bonds. Macromol. Rapid Commun. 2016, 37, 1033–1039. [Google Scholar] [CrossRef]
- Calderón-Vergara, L.; Ovalle-Serrano, S.; Blanco-Tirado, C.; Combariza, M. Influence of post-oxidation reactions on the physicochemical properties of TEMPO-oxidized cellulose nanofibers before and after amidation. Cellulose 2020, 27, 1273–1288. [Google Scholar] [CrossRef]
- Guo, M.; Duan, Y.; Li, Z.; Liu, R.; Qin, C.; Li, Q. Role of silane compatibilization on cellulose nanofiber reinforced poly (lactic acid) (PLA) composites with superior mechanical properties, thermal stability, and tunable degradation rates. Int. J. Biol. Macromol. 2025, 297, 139836. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Q.; Andersson, R.L.; Hedenqvist, M.S.; Farris, S.; Olsson, R.T. Cellulose nanofibril core–shell silica coatings and their conversion into thermally stable nanotube aerogels. J. Mater. Chem. A 2015, 3, 15745–15754. [Google Scholar] [CrossRef]
Unbleached Fibers | Bleached Fibers | |
---|---|---|
Mean length [mm] 1 | ||
Arithmetic, LN | 0.47 ± 0.02 | 0.33 ± 0.01 |
Length weighted, LW | 0.78 ± 0.05 | 0.47 ± 0.02 |
Weight weighted, LZ | 1.33 ± 0.09 | 0.78 ± 0.02 |
Mean width [µm] | ||
Arithmetic, W | 12.25 ± 0.07 | 12.2 ± 0.4 |
Percent fines [%] | ||
Arithmetic | 66 ± 1 | 88.4 ± 0.3 |
Length weighted | 33 ± 2 | 72 ± 1 |
Mean curl index | ||
Arithmetic, CIn | 0.119 ± 0.003 | 0.135 ± 0.004 |
Length weighted, CIw | 0.135 ± 0.007 | 0.139 ± 0.006 |
Mean kink index | ||
Kink index [1/mm], KI | 2.46 ± 0.01 | 2.59 ± 0.06 |
Total kink angle [°] | 42.4 ± 0.9 | 40.2 ± 0.5 |
Kinks per mm [1/mm] | 1.225 ± 0.007 | 1.23 ± 0.04 |
Processing Stage | Technique(s) | Observed Morphology | Dimensions |
---|---|---|---|
Raw pineapple leaf fibers (PALFs) | Visual, confocal fluorescence microscopy, SEM | Bundled fibrous tissues embedded in parenchyma; heterogeneous structure | Width: Variable dimensions in micrometer range. Length: variable dimensions in cm range. Mean width: 159 ± 2 µm (SEM) |
Cellulosic fibers: Unbleached (Cell-UB) | FQA, SEM | Partially disaggregated fibers; residual lignin/hemicellulose visible | Mean length, FQA: 0.47 ± 0.02 mm Mean width: 12.25 ± 0.07 µm (FQA), 10 ± 2 µm (SEM) |
Cellulosic fibers: Bleached (Cell-B) | FQA, SEM | Cleaner, smoother fibers; more homogeneous appearance | Mean length, FQA: 0.33 ± 0.01 mm Mean width 12.2 ± 0.4 µm (FQA), 9 ± 2 µm (SEM) |
MNFC from Cell-UB (MNFC-UB) | TEM, AFM | Nanofibrillar network with some agglomeration | Mean width: 15 ± 4 nm (TEM); 22 ± 4 nm (AFM) |
MNFC from Cell-B (MNFC-B) | TEM, AFM | Nanofibrillar network, thinner nanofibrils with improved dispersion | Mean width: 12 ± 3 nm (TEM); 20 ± 4 nm (AFM) |
Material | PALF | Unbleached Cellulosic Fibers (Cell-UB) | Bleached Cellulosic Fibers (Cell-B) | MNFC-UB | MNFC-B |
---|---|---|---|---|---|
Tonset [°C] | 256 | 315 | 359 | 262 | 252 |
496 | 470 | - | 486 | 470 | |
Tmax [°C] | 54 | 42 | 45 | 32 | 38 |
338/367 | 393 | 416 | 314/365 | 279/314 | |
554 | 546 | 599 | 495 | ||
Residue at 650 °C [wt%] | 1.8 | 2.8 | 13.0 | 7.3 | 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquivel-Alfaro, M.; Sulbarán-Rangel, B.; Rojas-Carrillo, O.; Chen, J.; Rodríguez-Quesada, L.; Sáenz-Arce, G.; Rojas, O.J. Processing of Pineapple Leaf Fibers for the Production of Oxidized Micro-/Nanofibrillated Cellulose. Polymers 2025, 17, 2671. https://doi.org/10.3390/polym17192671
Esquivel-Alfaro M, Sulbarán-Rangel B, Rojas-Carrillo O, Chen J, Rodríguez-Quesada L, Sáenz-Arce G, Rojas OJ. Processing of Pineapple Leaf Fibers for the Production of Oxidized Micro-/Nanofibrillated Cellulose. Polymers. 2025; 17(19):2671. https://doi.org/10.3390/polym17192671
Chicago/Turabian StyleEsquivel-Alfaro, Marianelly, Belkis Sulbarán-Rangel, Oscar Rojas-Carrillo, Jingqian Chen, Laria Rodríguez-Quesada, Giovanni Sáenz-Arce, and Orlando J. Rojas. 2025. "Processing of Pineapple Leaf Fibers for the Production of Oxidized Micro-/Nanofibrillated Cellulose" Polymers 17, no. 19: 2671. https://doi.org/10.3390/polym17192671
APA StyleEsquivel-Alfaro, M., Sulbarán-Rangel, B., Rojas-Carrillo, O., Chen, J., Rodríguez-Quesada, L., Sáenz-Arce, G., & Rojas, O. J. (2025). Processing of Pineapple Leaf Fibers for the Production of Oxidized Micro-/Nanofibrillated Cellulose. Polymers, 17(19), 2671. https://doi.org/10.3390/polym17192671