Multiscale Uncertainty Quantification of Woven Composite Structures by Dual-Correlation Sampling for Stochastic Mechanical Behavior
Abstract
1. Introduction
2. Materials and Methods
2.1. The Framework of Multiscale Uncertainty Analysis
2.2. Mechanical Experiment of Plain Woven Composites
2.3. Methodology of Multiscale Modeling
2.3.1. The Microscopic Analytical Model for Fiber Bundles
2.3.2. The Mesoscopic RVE Model for Plain Woven Composites
2.3.3. The Macroscopic SFEM for Composite Components
2.4. Correlation Quantification and Propagation Model
2.4.1. The Correlation Analysis of Material Parameters
2.4.2. The Correlated Sampling Method for the SFEM
- (1)
- For the spatial centroid coordinates in the random region of the SFEM, where q is the number of random elements. For the variable , an exponential autocorrelation function is selected to construct the spatial distribution random field, expressed as
- (2)
- For the variable , the calculation of spatial covariance matrix is performed as
- (3)
- Generate a set of random samples that follow the standard normal distribution and calculate the parameter according to Equation (16), where is the mean of Xi:
- (4)
- Repeat the above steps for each variable Xi to obtain the samples . After the first-stage transformation, the possesses spatial autocorrelation but lacks cross-correlation.
- (5)
- A similar procedure is carried out to further transform the variable . First, the probability distribution of samples , including the mean and standard deviation , is calculated. By incorporating the correlations obtained from the correlation analysis in Section 2.4.1, the covariance matrix is calculated as
- (6)
- Then, Cholesky decomposition on is performed to obtain the lower triangular matrix . Convert into standard normal distributed samples based on the and . Finally, the samples that incorporate both cross-correlation and spatial autocorrelations are obtained:
3. Results
3.1. The Probability Distribution of Input Variables
3.1.1. The Probability Distribution of Microscopic Constituent Material Parameters
3.1.2. The Probability Distribution of Mesoscopic Geometric Parameters
3.2. The Results of Mesoscopic Analysis
3.3. The Results of Macroscopic Analysis
3.3.1. Analysis of Samples Obtained Through Dual-Correlation Sampling
3.3.2. Analysis of Stochastic Mechanical Response of Structures Predicted by SFEMs
4. Conclusions
- (1)
- The dual-correlation sampling technique generated a “weakened zone clustering and strong zone continuous” performance distribution that closely resembles the real structures. Notably, the novel technique uniquely distinguished and coupled both the inter-specimen variability and intra-specimen heterogeneity of material property distributions, thereby reflecting the actual distribution of material properties in structural components.
- (2)
- The mean value of the in-plane strengths of structures using the proposed method was 460.7 MPa, with a standard deviation of 17.0 MPa, which aligned well with the experimental results of 462.4 ± 21.3 MPa. In contrast, the independent sampling approach significantly underestimated both the mean strength and the standard deviation, leading to inaccurate probabilistic predictions.
- (3)
- The dual-correlation sampling method effectively reproduced the spatial distribution characteristics of material properties, leading to more realistic predictions of damage morphology. As spatial correlation strengthened, damage patterns evolved from randomly distributed point-like failures to regular, band-like fracture zones, which aligned closely with experimental observations.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Construction of the Mesoscopic RVE Model
Appendix A.2. Constitutive Model of the Fiber Bundle and Matrix
Failure Mode | Expression |
---|---|
Longitudinal tensile failure | |
Longitudinal compressive failure | |
Transverse tensile failure | |
Transverse compressive failure | |
Out-of-plane tensile failure | |
Out-of-plane compressive failure |
References
- Zhang, Y.; Li, Y.; Luan, X.; Meng, B.; Liu, J.; Lu, Y. Effects of Void Characteristics on the Mechanical Properties of Carbon Fiber Reinforced Polyetheretherketone Composites: Micromechanical Modeling and Analysis. Polymers 2025, 17, 1721. [Google Scholar] [CrossRef]
- Yin, Q.-Z.; Bian, J.; Fan, Y. A Numerical Study on Lightning Damages and Residual Strength of CFRP Laminates Considering Delamination Induced by Thermal Stress. Polymers 2025, 17, 2245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wang, Z.; Gao, Q.; Yuan, S.; Tang, J. Recent advances in uncertainty quantification in structural response characterization and system identification. Probabilistic Eng. Mech. 2023, 74, 103507. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Qian, S.Y.; Wang, N.W.; Xiong, W.; Wu, W.Q. A review on stochastic multiscale analysis for FRP composite structures. Compos. Struct. 2022, 284, 115132. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, C. An imprecise multiscale uncertainty quantification framework for fiber reinforced composites. Probabilistic Eng. Mech. 2024, 78, 103686. [Google Scholar] [CrossRef]
- Wan, A.; Li, D.; Lu, P. Three-scale modeling and probabilistic progressive damage analysis of woven composite laminates. Mech. Adv. Mater. Struct. 2024, 31, 602–618. [Google Scholar] [CrossRef]
- Shah, S.; Lee, J.; Megat-Yusoff, P.; Hussain, S.Z.; Sharif, T.; Choudhry, R. Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects. Compos. Struct. 2023, 318, 117109. [Google Scholar] [CrossRef]
- Generale, A.P.; Kalidindi, S.R. Uncertainty quantification and propagation in the microstructure-sensitive prediction of the stress-strain response of woven ceramic matrix composites. Compos. Struct. 2023, 286, 107110. [Google Scholar] [CrossRef]
- Ali, O.; Bigaud, D.; Riahi, H. Seismic performance of reinforced concrete frame structures strengthened with FRP laminates using a reliability-based advanced approach. Compos. Part B Eng. 2018, 139, 238–248. [Google Scholar] [CrossRef]
- Zhou, K.; Enos, R.; Xu, D.; Zhang, D.; Tang, J. Hierarchical multi-response Gaussian processes for uncertainty analysis with multi-scale composite manufacturing simulation. Comp. Mater. Sci. 2022, 207, 111257. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, P.; Liu, Z. Uncertainty analysis of mechanical properties of plain woven carbon fiber reinforced composite via stochastic constitutive modeling. Compos. Struct. 2019, 207, 684–700. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Wang, Z.; Fei, C.-W.; Yuan, Z.-S.; Wei, J.-S.; Tang, W.-Z. Fuzzy Multi-SVR Learning Model for Reliability-Based Design Optimization of Turbine Blades. Materials 2019, 12, 2341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cheng, X.; Chen, J.; Xie, K.; Hu, J. Cross-entropy based importance sampling for composite systems reliability evaluation with consideration of multivariate dependence. Int. J. Electr. Power Energy Syst. 2024, 157, 109874. [Google Scholar] [CrossRef]
- Balokas, G.; Czichon, S.; Rolfes, R. Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty. Compos. Struct. 2018, 183, 550–562. [Google Scholar] [CrossRef]
- Ariyasinghe, N.; Herath, S. Machine learning techniques for predictive modelling and uncertainty quantification of the mechanical properties of woven carbon fibre composites. Mater. Today Commun. 2024, 40, 109732. [Google Scholar] [CrossRef]
- Ciampaglia, A. Data driven statistical method for the multiscale characterization and modelling of fiber reinforced composites. Compos. Struct. 2023, 320, 117215. [Google Scholar] [CrossRef]
- Han, J.; Wang, R.; Hu, D.; Bao, J.; Liu, X.; Guo, X. A novel integrated model for 3D braided composites considering stochastic characteristics. Compos. Struct. 2022, 286, 115309. [Google Scholar] [CrossRef]
- Zhi, J.; Tay, T.-E. Computational structural analysis of composites with spectral-based stochastic multi-scale method. Multiscale Multidiscip. Model. Exp. Des. 2018, 1, 103–118. [Google Scholar] [CrossRef]
- Shi, D.; Teng, X.; Jing, X.; Lyu, S.; Yang, X. A multi-scale stochastic model for damage analysis and performance dispersion study of a 2.5D fiber-reinforced ceramic matrix composites. Compos. Struct. 2020, 248, 112549. [Google Scholar] [CrossRef]
- Tao, W.; Zhu, P.; Xu, C.; Liu, Z. Uncertainty quantification of mechanical properties for three-dimensional orthogonal woven composites. Part II: Multiscale simulation. Compos. Struct. 2020, 235, 111764. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, C.; Cheng, G.; Meng, S.; Xie, W. Uncertainty quantification method for mechanical behavior of C/SiC composite and its experimental validation. Compos. Struct. 2019, 230, 111516. [Google Scholar] [CrossRef]
- Sun, T.; Jiang, R.; Sun, H.; Liu, D.; Pan, Z. Multiscale uncertainty propagation analysis and reliability optimization of the CFRP crossbeam of the twist beam axle. Int. J. Mech. Sci. 2023, 242, 108022. [Google Scholar] [CrossRef]
- Nastos, C.; Zarouchas, D. Probabilistic failure analysis of quasi-isotropic CFRP structures utilizing the stochastic finite element and the Karhunen–Loève expansion methods. Compos. Part B Eng. 2022, 235, 109742. [Google Scholar] [CrossRef]
- Zhao, Y.; Vandepitte, D.; Lomov, S.V. Fibre misalignments in the split-disk test represented by random fields. Compos. Part B Eng. 2024, 286, 111768. [Google Scholar] [CrossRef]
- Stefanou, G.; Savvas, D.; Gavallas, P.; Papaioannou, I. The effect of random field parameter uncertainty on the response variability of composite structures. Comp. Part C Open Access 2022, 9, 100324. [Google Scholar] [CrossRef]
- Arregui-Mena, J.D.; Worth, R.N.; Bodel, W.; März, B.; Li, W.; Campbell, A.A.; Cakmak, E.; Gallego, N.; Contescu, C.; Edmondson, P.D. Multiscale characterization and comparison of historical and modern nuclear graphite grades. Mater. Char. 2022, 190, 112047. [Google Scholar] [CrossRef]
- Zhou, K.; Tang, J. Uncertainty Quantification of Mode Shape Variation Utilizing Multi-Level Multi-Response Gaussian Process. J. Vib. Acoust. 2021, 143, 011003. [Google Scholar] [CrossRef]
- Bostanabad, R.; Liang, B.; Gao, J.; Liu, W.K.; Cao, J.; Zeng, D.; Su, X.; Xu, H.; Li, Y.; Chen, W. Uncertainty quantification in multiscale simulation of woven fiber composites. Comput. Methods Appl. Mech. Eng. 2018, 338, 506–532. [Google Scholar] [CrossRef]
- Jiang, D.; Nie, W.; Fei, Q.; Wu, S. Free vibration analysis of composite panels considering correlations of spatially distributed uncertain parameters. Appl. Math. Model. 2021, 98, 747–757. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Fu, M.; Fang, G.; Meng, S. Spatial variability characterization and modelling of 2.5D woven SiO2f/SiO2 composites. Compos. Part A Appl. Sci. Manuf. 2024, 178, 107997. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Chamis, C.C. Mechanics of composite materials: Past, present, and future. J. Compos. Technol. Res. 1989, 11, 3–14. [Google Scholar] [CrossRef]
- Chamis, C.C. Simplified Composite Micromechanics Equations for Strength, Fracture Toughness, Impact Resistance and Environmental Effects. NASA Technical Memorandum. 1984. Available online: https://ntrs.nasa.gov/citations/19840059071 (accessed on 19 September 2025).
- Doitrand, A.; Fagiano, C.; Irisarri, F.-X.; Hirsekorn, M. Comparison between voxel and consistent meso-scale models of woven composites. Compos. Part A Appl. Sci. Manuf. 2015, 73, 143–154. [Google Scholar] [CrossRef]
- Mileiko, S.T. Fracture-toughness/notch-sensitivity correlation for metal- and ceramic-based fibrous composites. Compos. Part B Eng. 2017, 116, 1–6. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. Energy statistics: A class of statistics based on distances. J. Stat. Plan. Infer. 2013, 143, 1249–1272. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Z.; Qin, F. Estimation of the Generalized Sobol’s Sensitivity Index for Multivariate Output Model Using Unscented Transformation. J. Struct. Eng. 2017, 143, 06016005. [Google Scholar] [CrossRef]
- Naik, N.K.; Ganesh, V.K. Failure Behavior of Plain Weave Fabric Laminates under On-Axis Uniaxial Tensile Loading: I—Analytical Predictions. J. Compos. Mater. 1996, 30, 1779–1822. [Google Scholar] [CrossRef]
- Shaw, A.; Sriramula, S.; Gosling, P.D.; Chryssanthopoulos, M.K. A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis. Compos. Part B Eng. 2010, 41, 446–453. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Gulyaeva, Y.K. Strength statistics for porous alumina. Powder Technol. 2019, 343, 783–791. [Google Scholar] [CrossRef]
- Tsuruta, Y. Bias correction for kernel density estimation with spherical data. J. Multivar. Anal. 2024, 203, 105338. [Google Scholar] [CrossRef]
- Mazumder, A.; Zheng, L.; Jiao, Y.; Bullions, T.; Yu, Y.; Wang, Y. Predictive modeling of 3D textile composites using realistic micromechanical representations. Compos. Part B Eng. 2024, 279, 111441. [Google Scholar] [CrossRef]
- Anderson, T.W. An Introduction to Multivariate Statistical Analysis, 3rd ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Alshahrani, H.; Sebaey, T.A. Bearing Properties of CFRP Composite Laminates Containing Spread-Tow Thin-Plies. Polymers 2022, 14, 2076. [Google Scholar] [CrossRef]
- Xia, Z.; Zhou, C.; Yong, Q.; Wang, X. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 2006, 43, 266–278. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Yang, Z. Progressive damage analysis and strength prediction of 2D plain woven composites. Compos. Part B Eng. 2013, 47, 220–229. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Liu, Y.; Ran, Z. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos. Sci. Technol. 2012, 72, 1818–1825. [Google Scholar] [CrossRef]
Parameters | Mean Value | Standard Deviation | CoV. |
---|---|---|---|
Fiber longitudinal tensile strength /MPa | 2500 | 28.24 | 1.11% |
Fiber longitudinal compressive strength /MPa | 2000 | 40.00 | 5.00% |
Matrix tensile strength /MPa | 60 | 2.75 | 4.59% |
Matrix compressive strength /MPa | 100 | 5.00 | 5.00% |
Fiber volume fraction Vf/% | 0.5 | 0.025 | 5.00% |
Pearson Correlation Coefficient | Distance Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|
Sc | Sc | ||||||
1 | 0.958 | −0.284 | 1 | 0.916 | 0.099 | ||
1 | −0.212 | 1 | 0.058 | ||||
Sc | 1 | 1 |
Symbol | Physical Meaning | Statistical Object | Distribution Source |
---|---|---|---|
Inter-specimen variability | Experimental macroscopic strength values of a batch of specimens | Multi-specimen experiments or RVE models | |
Intra-specimen spatial heterogeneity | Strength values of individual elements within a single specimen | Micro-area Raman spectroscopy or MRF sampling |
Model | Description | Model | Description |
---|---|---|---|
SFEM-I | V | i-SFEM | Independent sampling, |
SFEM-II | V | d-FEM | Deterministic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Xiao, S.; Hou, C.; Wan, X.; Gong, J.; Xia, D. Multiscale Uncertainty Quantification of Woven Composite Structures by Dual-Correlation Sampling for Stochastic Mechanical Behavior. Polymers 2025, 17, 2648. https://doi.org/10.3390/polym17192648
Yang G, Xiao S, Hou C, Wan X, Gong J, Xia D. Multiscale Uncertainty Quantification of Woven Composite Structures by Dual-Correlation Sampling for Stochastic Mechanical Behavior. Polymers. 2025; 17(19):2648. https://doi.org/10.3390/polym17192648
Chicago/Turabian StyleYang, Guangmeng, Sinan Xiao, Chi Hou, Xiaopeng Wan, Jing Gong, and Dabiao Xia. 2025. "Multiscale Uncertainty Quantification of Woven Composite Structures by Dual-Correlation Sampling for Stochastic Mechanical Behavior" Polymers 17, no. 19: 2648. https://doi.org/10.3390/polym17192648
APA StyleYang, G., Xiao, S., Hou, C., Wan, X., Gong, J., & Xia, D. (2025). Multiscale Uncertainty Quantification of Woven Composite Structures by Dual-Correlation Sampling for Stochastic Mechanical Behavior. Polymers, 17(19), 2648. https://doi.org/10.3390/polym17192648