Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reprocessing PBS and PBS/BSGF
2.3. Characterisations
2.3.1. Rheological Analysis
2.3.2. Melt Flow Index Analysis
2.3.3. Morphological Analysis
2.3.4. ATR-FTIR
2.3.5. Roughness Measurements
2.3.6. Water Contact Angle Measurements (WCA)
2.3.7. Hardness
2.3.8. Tensile Test
2.3.9. Differential Scanning Calorimetry (DSC) Analysis
2.3.10. Statistical Analysis
3. Results and Discussion
3.1. Processing of r-PBS and r-PBS/BSGF
3.2. Rheological Behaviour and Morphological Observations of r-PBS and r-PBS/BSGF
3.3. Surface Analysis: Wettability, Spectroscopy and Roughness of r-PBS and r-PBS/BSGF
3.4. Thermal Behaviour of r-PBS and r-PBS/BSGF
3.5. Mechanical Behaviour of r-PBS and r-PBS/BSGF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Guo, B.-H. Poly(Butylene Succinate) and Its Copolymers: Research, Development and Industrialization. Biotechnol. J. 2010, 5, 1149–1163. [Google Scholar] [CrossRef]
- Nath, D.; Misra, M.; Al-Daoud, F.; Mohanty, A.K. Studies on Poly(Butylene Succinate) and Poly(Butylene Succinate- Co -Adipate)-Based Biodegradable Plastics for Sustainable Flexible Packaging and Agricultural Applications: A Comprehensive Review. RSC Sustain. 2025, 3, 1267–1302. [Google Scholar] [CrossRef]
- Kato, S.; Ueda, T.; Aoshima, T.; Kosaka, N.; Nitta, S. BioPBSTM (Polybutylene Succinate). In Synthetic Biodegradable and Biobased Polymers: Industrial Aspects and Technical Products; Künkel, A., Battagliarin, G., Winnacker, M., Rieger, B., Coates, G., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 269–304. ISBN 978-3-031-45862-0. [Google Scholar]
- Hiller, B.T.; Azzi, J.L.; Rennert, M. Improvement of the Thermo-Oxidative Stability of Biobased Poly(Butylene Succinate) (PBS) Using Biogenic Wine By-Products as Sustainable Functional Fillers. Polymers 2023, 15, 2533. [Google Scholar] [CrossRef] [PubMed]
- Georgousopoulou, I.-N.; Vouyiouka, S.; Dole, P.; Papaspyrides, C.D. Thermo-Mechanical Degradation and Stabilization of Poly(Butylene Succinate). Polym. Degrad. Stab. 2016, 128, 182–192. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of Polymer Blends: A Brief Review. Polym. Degrad. Stab. 2017, 145, 79–92. [Google Scholar] [CrossRef]
- Goetjes, V.; Zarges, J.-C.; Heim, H.-P. Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(Lactic Acid) and Poly(Lactic Acid)/Starch Composites in Warm and Humid Environments. Materials 2024, 17, 3683. [Google Scholar] [CrossRef]
- Nanni, A.; Ricci, A.; Versari, A.; Messori, M. Wine Derived Additives as Poly(Butylene Succinate) (PBS) Natural Stabilizers for Different Degradative Environments. Polym. Degrad. Stab. 2020, 182, 109381. [Google Scholar] [CrossRef]
- Mochane, M.J.; Magagula, S.I.; Sefadi, J.S.; Mokhena, T.C. A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS). Polymers 2021, 13, 1200. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ Spent Grain: A Review with an Emphasis on Food and Health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- De Luca, S.; Mueller, K.; Tomei, L.; Nottiani, D.G.; Milanese, D.; Sciancalepore, C. Brewer’s Spent Grains as Alternative Ligno-Cellulosic Filler for the Preparation of Bio-Based Polymer Composites. Adv. Polym. Technol. 2025, 2025, 5060184. [Google Scholar]
- Hadinoto, K.; Ling, J.K.-U.; Pu, S.; Tran, T.-T. Effects of Alkaline Extraction pH on Amino Acid Compositions, Protein Secondary Structures, Thermal Stability, and Functionalities of Brewer’s Spent Grain Proteins. Int. J. Mol. Sci. 2024, 25, 6369. [Google Scholar] [CrossRef]
- Visco, A.; Bardella, N.; Scolaro, C.; Belhamdi, H.; Brahimi, S.; Gatto, V.; Samiolo, R.; Beghetto, V. Reuse of Beer Spent Grain for the Industrial Production of Biodegradable Bio-Composites. Ind. Crops Prod. 2025, 235, 121684. [Google Scholar] [CrossRef]
- ASTM D1238-23; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM: West Conshohocken, PA, USA, 2023. [CrossRef]
- Stark, N.M.; Matuana, L.M. Surface Chemistry Changes of Weathered HDPE/Wood-Flour Composites Studied by XPS and FTIR Spectroscopy. Polym. Degrad. Stab. 2004, 86, 1–9. [Google Scholar] [CrossRef]
- ASTM D7334-08; Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. ASTM: West Conshohocken, PA, USA, 2022. [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Marmur, A.; Mittal, K.L. Contact Angle, Wettability and Adhesion; Koninklijke Brill NV: Leiden, The Netherlands, 2009; pp. 1–18. [Google Scholar]
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2022. [CrossRef]
- Phua, Y.J.; Lau, N.S.; Sudesh, K.; Chow, W.S.; Mohd Ishak, Z.A. Biodegradability Studies of Poly(Butylene Succinate)/Organo-Montmorillonite Nanocomposites under Controlled Compost Soil Conditions: Effects of Clay Loading and Compatibiliser. Polym. Degrad. Stab. 2012, 97, 1345–1354. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Bertolini, A.; Aliotta, L.; Gigante, V.; Vannozzi, A.; Lazzeri, A. Chain Extension of Poly(Lactic Acid) (PLA)–Based Blends and Composites Containing Bran with Biobased Compounds for Controlling Their Processability and Recyclability. Polymers 2021, 13, 3050. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Hydrolytic Degradation of Biodegradable Polyesters under Simulated Environmental Conditions. J. Appl. Polym. Sci. 2015, 132, 42189. [Google Scholar] [CrossRef]
- Phua, Y.J.; Chow, W.S.; Mohd Ishak, Z.A. Reactive Processing of Maleic Anhydride-Grafted Poly(Butylene Succinate) and the Compatibilizing Effect on Poly(Butylene Succinate) Nanocomposites. Express Polym. Lett. 2013, 7, 340–354. [Google Scholar] [CrossRef]
- Cai, Y.; Lv, J.; Feng, J. Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. J. Polym. Environ. 2013, 21, 108–114. [Google Scholar] [CrossRef]
- Abeynayake, R.; Zhang, S.; Yang, W.; Chen, L. Development of Antioxidant Peptides from Brewers’ Spent Grain Proteins. LWT 2022, 158, 113162. [Google Scholar] [CrossRef]
- Mikame, K.; Ohashi, Y.; Naito, Y.; Nishimura, H.; Katahira, M.; Sugawara, S.; Koike, K.; Watanabe, T. Natural Organic Ultraviolet Absorbers from Lignin. ACS Sustain. Chem. Eng. 2021, 9, 16651–16658. [Google Scholar] [CrossRef]
- Muasher, M.; Sain, M. The Efficacy of Photostabilizers on the Color Change of Wood Filled Plastic Composites. Polym. Degrad. Stab. 2006, 91, 1156–1165. [Google Scholar] [CrossRef]
- Fabiyi, J.S.; McDonald, A.G.; Wolcott, M.P.; Griffiths, P.R. Wood Plastic Composites Weathering: Visual Appearance and Chemical Changes. Polym. Degrad. Stab. 2008, 93, 1405–1414. [Google Scholar] [CrossRef]
- Visco, A.; Scolaro, C.; Oliveri, F.; Ruta, A.J. Mathematical Modelling of Tensile Mechanical Behavior of a Bio-Composite Based on Polybutylene-Succinate and Brewer Spent Grains. Polymers 2024, 16, 2966. [Google Scholar] [CrossRef] [PubMed]
- Ewurum, N.; McDonald, A.G. Lignin Reinforcement in Polybutylene Succinate Copolymers. Polymers 2025, 17, 194. [Google Scholar] [CrossRef]
Assigned Peak (cm−1) | Chemical Shift/Groups |
---|---|
3200–3600 | hydroperoxide and hydroxyl species |
2963, 2925, 2859 | –CH2 and –CH stretching |
1710 | C=O stretching |
1159 | C-O stretching |
1333 | symmetric C–O stretching |
1046 | O(CH2)4O vibration |
952, 914 | Vinyl groups [5,25] |
917 | –C–OH bending in the carboxylic acid groups [24] |
955 (*) | C–O symmetric stretching [5,25] |
806 (*) | –CH2 in OC(CH2)2CO in-plane bending [5,25] |
656 (*) | COO bending [5,25] |
Sample | Tm (°C) | ΔHm (J/g) | χc (%) | Sample | Tm (°C) | ΔHm (J/g) | χc (%) |
---|---|---|---|---|---|---|---|
r-PBS_1 | 115.3 ± 3.6 | 63.9 ± 2.4 | 57.9 ± 2.6 | r-PBS/BSGF_1 | 114.1 ± 1.8 | 62.1 ± 2.6 | 56.3 ± 0.5 |
r-PBS_2 | 115.1 ± 4.4 | 75.3 ± 3.3 | 68.3 ± 1.1 | r-PBS/BSGF_2 | 113.0 ± 3.7 | 47.8 ± 2.5 | 43.3 ± 1.2 |
r-PBS_3 | 115.5 ± 5.3 | 69.8 ± 2.3 | 63.3 ± 2.2 | r-PBS/BSGF_3 | 113.2 ± 2.0 | 62.2 ± 3.0 | 56.4 ± 0.9 |
r-PBS_4 | 115.6 ± 3.7 | 61.8 ± 1.7 | 56.0 ± 2.7 | r-PBS/BSGF_4 | 112.1 ± 4.7 | 55.7 ± 2.2 | 50.5 ± 1.8 |
r-PBS_5 | 114.7 ± 4.8 | 73.2 ± 3.1 | 66.4 ± 2.1 | r-PBS/BSGF_5 | 112.3 ± 2.7 | 53.2 ± 2.0 | 48.3 ± 0.7 |
Sample | Shore D [HD] | Et [MPa] | εb [%] | σb [MPa] | Sample | Shore D [HD] | Et [MPa] | εb [%] | σb [MPa] |
---|---|---|---|---|---|---|---|---|---|
r-PBS_1 | 64.86 ± 0.60 | 778.8 ± 52.9 | 9.9 ± 1.0 | 32.9 ± 1.7 | r-PBS/BSGF_1 | 63.58 ± 0.30 | 1090.3 ± 91.8 | 4.8 ± 0.6 | 18.1 ± 1.1 |
r-PBS_2 | 64.56 ± 0.27 | 839.0 ± 57.9 | 9.4 ± 1.2 | 33.7 ± 1.5 | r-PBS/BSGF_2 | 63.94 ± 0.32 | 1184.2 ± 61.5 | 4.4 ± 0.6 | 15.4 ± 1.8 |
r-PBS_3 | 64.54 ± 0.31 | 865.7 ± 41.5 | 9.1 ± 1.2 | 32.9 ± 1.6 | r-PBS/BSGF_3 | 63.66 ± 0.37 | 1246.3 ± 58.8 | 4.3 ± 0.6 | 14.4 ± 1.5 |
r-PBS_4 | 63.56 ± 0.47 | 907.3 ± 71.8 | 9.4 ± 0.9 | 33.6 ± 1.6 | r-PBS/BSGF_4 | 63.36 ± 0.34 | 1375.5 ± 66.3 | 4.2 ± 0.5 | 16.3 ± 1.0 |
r-PBS_5 | 63.32 ± 0.30 | 880.7 ± 55.7 | 8.8 ± 1.1 | 30.5 ± 1.6 | r-PBS/BSGF_5 | 62.98 ± 0.33 | 1290.3 ± 85.2 | 3.7 ± 0.2 | 13.6 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dintcheva, N.T.; Infurna, G.; Scolaro, C.; Di Liberto, E.A.; Ltayef, M.; Visco, A. Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste. Polymers 2025, 17, 2577. https://doi.org/10.3390/polym17192577
Dintcheva NT, Infurna G, Scolaro C, Di Liberto EA, Ltayef M, Visco A. Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste. Polymers. 2025; 17(19):2577. https://doi.org/10.3390/polym17192577
Chicago/Turabian StyleDintcheva, Nadka Tz., Giulia Infurna, Cristina Scolaro, Erika Alessia Di Liberto, Mariem Ltayef, and Annamaria Visco. 2025. "Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste" Polymers 17, no. 19: 2577. https://doi.org/10.3390/polym17192577
APA StyleDintcheva, N. T., Infurna, G., Scolaro, C., Di Liberto, E. A., Ltayef, M., & Visco, A. (2025). Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste. Polymers, 17(19), 2577. https://doi.org/10.3390/polym17192577