Controlled Surface Engineering of Chitosan Hydrogels: Alkali/Urea Dissolution for Ratio-Specific Neodymium and Praseodymium Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Dual-Template Alkali/Urea Chitosan Ion-Imprinted Hydrogels (NdPr-AUCH)
2.2. Preparation of Control Materials (cAUCH)
2.3. Extraction Performance Evaluation
2.4. Sample Characterization and Analyses
3. Results
3.1. Surface Morphology Analysis via SEM
3.2. Functional Group Analysis via FTIR
3.3. Thermal Stability Assessment via TGA
3.4. Sorption Kinetics and Temperature Effects
3.5. Effect of Solution pH on Uptake Performance
3.6. Sorption Isotherm and Temperature Effects
3.7. Competitive Sorption
3.8. Reusability Studies
4. Discussion
4.1. Interface Design: Template Loading Effects on Surface Recognition Properties
4.2. Interface-Driven Selectivity: Mechanistic Insights from Thermodynamic Analysis
4.3. Alkali/Urea Dissolution System’s Role in Adjacent Lanthanide Discrimination
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maestro, P.; Huguenin, D. Industrial applications of rare earths: Which way for the end of the century. J. Alloys Compd. 1995, 225, 520–528. [Google Scholar] [CrossRef]
- Humphries, M. Rare Earth Elements: The Global Supply Chain; Diane Publishing: Darby, PA, USA, 2010. [Google Scholar]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Tsubouchi, N.; Sugawara, K. Selective Recovery of Rare Earth Elements from Dy containing NdFeB Magnets by Chlorination. ACS Sustain. Chem. Eng. 2013, 1, 655–662. [Google Scholar] [CrossRef]
- Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zaimes, G.G.; Hubler, B.J.; Wang, S.; Khanna, V. Environmental Life Cycle Perspective on Rare Earth Oxide Production. ACS Sustain. Chem. Eng. 2015, 3, 237–244. [Google Scholar] [CrossRef]
- Weshahy, A.A.; Gouda, A.A.; Shohaib, R.E.; Atia, B.M.; Gado, M.A. Uptake and Recovery of Neodymium and Praseodymium from Magnet Waste NdFeB Using a Novel Pyridine Schiff Base Compound. ChemistrySelect 2024, 10, e202404297. [Google Scholar] [CrossRef]
- Smith, B.J.; Riddle, M.E.; Earlam, M.R.; Iloeje, C.; Diamond, D. Rare Earth Permanent Magnets: Supply Chain Deep Dive Assessment; USDOE Office of Policy (PO): Washington, DC, USA, 2022.
- Xie, F.; Zhang, T.A.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28. [Google Scholar] [CrossRef]
- Grauch, R.I.; Verplanck, P.L.; Seeger, C.M.; Budahn, J.R.; Van Gosen, B.S. Chemistry of Selected Core Samples, Concentrate, Tailings, and Tailings Pond Waters: Pea Ridge Iron (-Lanthanide-Gold) Deposit, Washington County, Missouri; Open-File Report 2010-1080; USGS: Reston, VA, USA, 2010. [Google Scholar]
- Bauk, G.; Caruso, A.; Chin, P.; Conca, J.; Kamenopoulos, S.; Kennedy, J.; Kutsch, J.; Lifton, J.; Mamula, N.; Pitron, G. China’s Rare Earth Subsidies and Structural Advantages: A Comprehensive List of China’s Advantages That Must Be Overcome for Any US or Allied Rare Earth Project’s Success; Thorium Energy Alliance: Harvard, IL, USA, 2023. [Google Scholar]
- Zepeda-Navarro, A.; Segoviano-Garfías, J.J.N.; Bivián-Castro, E.Y. The Multi-Challenges of the Multi-Ion-Imprinted Polymer Synthesis. Polymers 2024, 16, 2804. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Fu, Z.; Zhou, L.; Xu, B.; Zhang, K.; Zhou, S.; Zhou, L.; Jiang, W. Biotemplate Fabrication of S-Modified Cu–Co-Based Nanocomposites for Tandem Hydrogenation of Nitroaromatics. ACS Appl. Nano Mater. 2025, 8, 14666–14676. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, S.; Shao, N.; Tian, Z.; Zhu, X. Synthesis of a novel magnetic chitosan-mediated GO dual-template imprinted polymer for the simultaneous and selective removal of Cd(II) and Ni(II) from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132266. [Google Scholar] [CrossRef]
- Talkybek, J.; Kabzhalelov, K.; Malimbayeva, Z.; Korganbayeva, Z. Features of Selective Sorption of Neodymium and Praseodymium Ions by Interpolymer Systems Based on Industrial Sorbents KU-2-8 and AV-17-8. Polymers 2025, 17, 440. [Google Scholar] [CrossRef]
- Ding, K.; You, Y.; Tang, L.; Zhang, X.; Qin, Z.; Yin, X. “One-pot” preparation and uptake performance of chitosan-based La3+/Y3+ dual-ion-imprinted thermosensitive hydrogel. Carbohydr. Polym. 2023, 316, 121071. [Google Scholar]
- Zheng, X.; Zhang, Y.; Zhang, F.; Li, Z.; Yan, Y. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium. J. Hazard. Mater. 2018, 353, 496–504. [Google Scholar] [CrossRef]
- Earwood, J.; Deng, B. Recovery of neodymium (III) from mine waste by chitosan-based ion imprinted polymeric hydrogels. Sep. Purif. Technol. 2025, 361, 131356. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Ghaedi, M. Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr. Polym. 2020, 236, 116102. [Google Scholar] [CrossRef]
- Anwar, A.; Imran, M.; Ramzan, M.; Khan, F.A.; Ismail, N.; Hussain, A.I.; Hussain, S.M.; Alsanie, W.F.; Iqbal, H.M.N. Chitosan-based Dy2O3/CuFe3O4 bio-nanocomposite development, characterization, and drug release kinetics. Int. J. Biol. Macromol. 2022, 220, 788–801. [Google Scholar] [CrossRef]
- Dolak, İ.; Keçili, R.; Hür, D.; Ersöz, A.; Say, R. Ion-Imprinted Polymers for Selective Recognition of Neodymium(III) in Environmental Samples. Ind. Eng. Chem. Res. 2015, 54, 5328–5335. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Liu, E.; Xu, X.; Yan, Y. Efficient Recovery of Neodymium in Acidic System by Free-Standing Dual-Template Docking Oriented Ionic Imprinted Mesoporous Films. ACS Appl. Mater. Interfaces 2017, 9, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Bian, T.; Zhang, Y.; Zhang, Y.; Li, Z. Construction of ion-imprinted nanofiber chitosan films using low-temperature thermal phase separation for selective and efficiency uptake of Gd(III). Cellulose 2019, 27, 455–467. [Google Scholar] [CrossRef]
- Ali, I.; Zakaria, E.; Khalil, M.; El-Tantawy, A.; El-Saied, F. Synthesis of ion-imprinted polymers based on chitosan for high selectivity of La (III), Ce (III) and Sm (III) via solid phase extraction. J. Mol. Liq. 2022, 356, 119058. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Shen, J.; Ye, M. Facile preparation of magnetic chitosan/poly (vinyl alcohol) hydrogel beads with excellent uptake ability via freezing-thawing method. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 672–680. [Google Scholar] [CrossRef]
- Yang, W.; Fortunati, E.; Bertoglio, F.; Owczarek, J.S.; Bruni, G.; Kozanecki, M.; Kenny, J.M.; Torre, L.; Visai, L.; Puglia, D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr. Polym. 2018, 181, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, Z.; Hu, Q. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems. Sci. Rep. 2016, 6, 36053. [Google Scholar] [CrossRef] [PubMed]
- Tu, G.; Liu, X.; Li, Z.; Li, S.; Liu, J.; Li, W. Characterizing gelation kinetics of chitosan dissolved in an alkali/urea aqueous solution: Mechanisms accounting for the morphological development. J. Membr. Sci. 2021, 635, 119516. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, H.; Dong, L.; He, Q.; Liu, Z. Enhanced uptake behaviors of Co2+ on robust chitosan hydrogel microspheres derived from an alkali solution system: Kinetics and isotherm analysis. RSC Adv. 2018, 8, 36858. [Google Scholar] [CrossRef]
- Liang, X.; Duan, J.; Xu, Q.; Wei, X.; Lu, A.; Zhang, L. Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chem. Eng. J. 2017, 317, 766–776. [Google Scholar] [CrossRef]
- Medronho, B.; Romano, A.; Miguel, M.G.; Stigsson, L.; Lindman, B. Rationalizing cellulose (in)solubility: Reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 2012, 19, 581–587. [Google Scholar] [CrossRef]
- Khajavian, M.; Vatanpour, V.; Castro-Muñoz, R.; Boczkaj, G. Chitin and derivative chitosan-based structures—Preparation strategies aided by deep eutectic solvents: A review. Carbohydr. Polym. 2022, 275, 118702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Earwood, J.; Deng, B. Controlled Surface Engineering of Chitosan Hydrogels: Alkali/Urea Dissolution for Ratio-Specific Neodymium and Praseodymium Recovery. Polymers 2025, 17, 2567. https://doi.org/10.3390/polym17192567
Earwood J, Deng B. Controlled Surface Engineering of Chitosan Hydrogels: Alkali/Urea Dissolution for Ratio-Specific Neodymium and Praseodymium Recovery. Polymers. 2025; 17(19):2567. https://doi.org/10.3390/polym17192567
Chicago/Turabian StyleEarwood, John, and Baolin Deng. 2025. "Controlled Surface Engineering of Chitosan Hydrogels: Alkali/Urea Dissolution for Ratio-Specific Neodymium and Praseodymium Recovery" Polymers 17, no. 19: 2567. https://doi.org/10.3390/polym17192567
APA StyleEarwood, J., & Deng, B. (2025). Controlled Surface Engineering of Chitosan Hydrogels: Alkali/Urea Dissolution for Ratio-Specific Neodymium and Praseodymium Recovery. Polymers, 17(19), 2567. https://doi.org/10.3390/polym17192567