Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Strain and Plasmid
2.3. PHA Biosynthesis and Extraction
2.4. Nuclear Magnetic Resonance Spectroscopy
2.5. Compound Preparation and Testing
2.6. Molecular Weight Analysis
2.7. Thermal Property Analysis
2.8. Mechanical Property Analysis
2.9. Raman Spectroscopy Analysis
2.10. Equilibrium Swelling Test
2.11. Elemental Composition Analysis
2.12. Biodegradation Test
3. Results
3.1. Biosynthesis and Structural Analysis of P(3HB-co-3H5HE)
3.2. Film Appearance and Solvent Solubility of Vulcanized P(3HB-co-3H5HE)
3.3. Mechanical Properties
Sample | Solubility in Chloroform | Mechanical Properties | |||
---|---|---|---|---|---|
Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Toughness (MJ/m3) | ||
S1 | Dissolved | 25 | 64 | 475 | 14 |
S2 | Not Dissolved | 14 | 9 | 238 | 0.78 |
S3 | Dissolved | 3.1 ± 1.0 | 9.4 ± 1.0 | 43 ± 31 | 0.15 ± 0.13 |
S4 | Not Dissolved | 9.9 ± 1.0 | 73 ± 14 | 49 ± 21 | 5.8 ± 1.1 |
S5 | Dissolved | 0.6 | 430 | 1.9 | 2.0 |
S6 | Not Dissolved | 6.3 ± 1.0 | 813 ± 94 | 2.6 ± 0.2 | 25 ± 10 |
S7 | Not Dissolved | 4.1 ± 0.6 | 135 ± 29 | 6.0 ± 0.1 | 3.4 ± 1.2 |
3.4. Thermal Properties
3.5. Thermogravimetric Analysis
3.6. Raman Spectroscopy
3.7. Equilibrium Swelling Behavior
3.8. Elemental Composition of Samples
3.9. Biodegradability Test of Vulcanized PHA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pena, C.; Castillo, T.; Garcia, A.; Millan, M.; Segura, D. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): A review of recent research work. Microb. Biotechnol. 2014, 7, 278–293. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. A new wave of industrialization of PHA biopolyesters. Bioengineering 2022, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Saha, N.R.; Pal, A.; Chattopadhyay, D.; Paul, A.K. Comparative evaluation of physico-chemical characteristics of biopolyesters P(3HB) and P(3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02. Front. Biol. 2018, 13, 297–308. [Google Scholar] [CrossRef]
- Alfano, S.; Doineau, E.; Perdrier, C.; Preziosi-Belloy, L.; Gontard, N.; Martinelli, A.; Grousseau, E.; Angellier-Coussy, H. Influence of the 3-hydroxyvalerate content on the processability, nucleating and blending ability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based materials. ACS Omega 2024, 9, 29360–29371. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Neoh, S.Z.; Sudesh, K. A review on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] and genetic modifications that affect its production. Front. Bioeng. Biotechnol. 2022, 10, 1057067. [Google Scholar] [CrossRef]
- Doi, Y.; Kitamura, S.; Abe, H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 1995, 28, 4822–4828. [Google Scholar] [CrossRef]
- Eraslan, K.; Aversa, C.; Nofar, M.; Barletta, M.; Gisario, A.; Salehiyan, R.; Goksu, Y.A. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): Synthesis, properties, and applications-A review. Eur. Polym. J. 2022, 167, 111044. [Google Scholar] [CrossRef]
- Mizuno, S.; Nakagawa, A.; Sakurai, T.; Miyahara, Y.; Tsuge, T. Oxidation of methionine-derived 2-hydroxyalkanoate unit in biosynthesized polyhydroxyalkanoate copolymers. Int. J. Biol. Macromol. 2023, 224, 840–847. [Google Scholar] [CrossRef]
- Huang, P.; Okoshi, T.; Mizuno, S.; Hiroe, A.; Tsuge, T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Biosci. Biotechnol. Biochem. 2018, 82, 1615–1623. [Google Scholar] [CrossRef]
- Muangwong, A.; Boontip, T.; Pachimsawat, J.; Napathorn, S.C. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb. Cell Fact. 2016, 15, 55. [Google Scholar] [CrossRef]
- Rodrigues, M.F.A.; Da Silva, L.F.; Gomez, J.G.C.; Valentin, H.E.; Steinbüchel, A. Biosynthesis of poly(3-hydroxybutyric acid-co-3-hydroxy-4-pentenoic acid) from unrelated substrates by Burkholderia sp. Appl. Microbiol. Biotechnol. 1995, 43, 880–886. [Google Scholar] [CrossRef]
- Ulmer, H.W.; Gross, R.A.; Posada, M.; Weisbach, P.; Fuller, R.C.; Lenz, R.W. Bacterial production of poly(β-hydroxyalkanoates) containing unsaturated repeating units by Rhodospirillum rubrum. Macromolecules 1994, 27, 1675–1679. [Google Scholar] [CrossRef]
- Levine, A.C.; Heberlig, G.W.; Nomura, C.T. Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). Int. J. Biol. Macromol. 2016, 83, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Sehgal, R.; Gupta, R. Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer 2021, 212, 123161. [Google Scholar] [CrossRef]
- Park, W.H.; Lenz, R.W.; Goodwin, S. Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid. Macromolecules 1998, 31, 1480–1486. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Miyahara, Y.; Nakagawa, A.; Nakata, Y.; Nomura, C.T.; Tsuge, T. Polyetylene glycol grafting by thiol–ene reaction for the chemical modification of polyhydroxyalkanoates. Polym. Int. 2025, 74, 888–897. [Google Scholar] [CrossRef]
- Imamura, T.; Kenmoku, T.; Honma, T.; Kobayashi, S.; Yano, T. Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int. J. Biol. Macromol. 2001, 29, 295–301. [Google Scholar] [CrossRef]
- Bear, M.M.; Leboucher-Durand, M.A.; Langlois, V.; Lenz, R.W.; Goodwin, S.; Guérin, P. Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React. Funct. Polym. 1997, 34, 65–77. [Google Scholar] [CrossRef]
- Klongklaew, P.; Khamjapo, P.; Sae-Oui, P.; Jittham, P.; Loykulnant, S.; Intiya, W. Characterization and application in natural rubber of Leucaena leaf and its extracted products. Polymers 2023, 15, 3698. [Google Scholar] [CrossRef]
- Yamano, M.; Yamamoto, Y.; Saito, T.; Kawahara, S. Preparation and characterization of vulcanized natural rubber with high stereoregularity. Polymer 2021, 235, 124271. [Google Scholar] [CrossRef]
- Gagnon, K.D.; Lenz, R.W.; Farris, R.J.; Fuller, R.C. Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 1994, 35, 4358–4367. [Google Scholar] [CrossRef]
- Gagnon, K.D.; Lenz, R.W.; Farris, R.J.; Fuller, R.C. Chemical modification of bacterial elastomers: 2. Sulfur vulcanization. Polymer 1994, 35, 4368–4375. [Google Scholar] [CrossRef]
- Sukatta, U.; Rugthaworn, P.; Seangyen, W.; Tantaterdtam, R.; Smitthipong, W.; Chollakup, R. Prospects for rambutan peel extract as natural antioxidant on the aging properties of vulcanized natural rubber. SPE Polym. 2021, 2, 199–209. [Google Scholar] [CrossRef]
- Sato, S.; Honda, Y.; Kuwahara, M.; Watanabe, T. Degradation of vulcanized and nonvulcanized polyisoprene rubbers by lipid peroxidation catalyzed by oxidative enzymes and transition metals. Biomacromolecules 2003, 4, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wei, Y.; Wu, H.; Zhang, T.; Li, S.; Zhu, N.; Zhang, Q.; Li, W. Biodegradation of vulcanized natural rubber by enriched bacterial consortia. Chem. Eng. J. 2024, 481, 148685. [Google Scholar] [CrossRef]
- Tong, H.S.; Kabeb, S.M.; Abd Hamid, H.; Zulkifli, F.H. A review of biodegradability of natural rubber products: Physicochemical, thermal and mechanical properties. Int. J. Biol. Macromol. 2025, 318, 144973. [Google Scholar] [CrossRef]
- Suzuki, M.; Tachibana, Y.; Kasuya, K.I. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym. J. 2021, 53, 47–66. [Google Scholar] [CrossRef]
- Hachisuka, S.I.; Sakurai, T.; Mizuno, S.; Kosuge, K.; Endo, S.; Ishii-Hyakutake, M.; Miyahara, Y.; Yamazaki, M.; Tsuge, T. Isolation and characterization of polyhydroxyalkanoate-degrading bacteria in seawater at two different depths from Suruga Bay. Appl. Environ. Microbiol. 2023, 89, e01488-23. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.B.; O’Connor, K.E. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef]
- Watanabe, Y.; Ishizuka, K.; Furutate, S.; Abe, H.; Tsuge, T. Biosynthesis and characterization of novel poly(3-hydroxybutyrate-co-3-hydroxy-2-methylbutyrate): Thermal behavior associated with α-carbon methylation. RSC Adv. 2015, 5, 58679–58685. [Google Scholar] [CrossRef]
- Ushimaru, K.; Watanabe, Y.; Hiroe, A.; Tsuge, T. A single-nucleotide substitution in phasin gene leads to enhanced accumulation of polyhydroxyalkanoate (PHA) in Escherichia coli harboring Aeromonas caviae PHA biosynthetic operon. J. Gen. Appl. Microbiol. 2015, 61, 63–66. [Google Scholar] [CrossRef]
- Spratt, S.K.; Ginsburgh, C.L.; Nunn, W.D. Isolation and genetic characterization of Escherichia coli mutants defective in propionate metabolism. J. Bacteriol. 1981, 146, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.; Fan, X.; Ren, J.; Liu, Q.; Kong, B. Fabrication, characterisation, and application of green crosslinked sodium alginate hydrogel films by natural crab-shell powders to achieve drug sustained release. LWT 2022, 171, 114147. [Google Scholar] [CrossRef]
- Mierzati, M.; Sakurai, T.; Ishii-Hyakutake, M.; Miyahara, Y.; Nomura, C.T.; Taguchi, S.; Abe, H.; Tsuge, T. Biosynthesis, characterization, and biodegradation of elastomeric polyhydroxyalkanoates consisting of α-dimethylated monomer units. Mater. Today Sustain. 2023, 24, 100577. [Google Scholar] [CrossRef]
- Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.; Noda, I.; Ochiai, S.; Ozaki, Y. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends. Polymer 2006, 47, 3132–3140. [Google Scholar] [CrossRef]
- Sato, H.; Dybal, J.; Murakami, R.; Noda, I.; Ozaki, Y. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J. Mol. Struct. 2005, 744, 35–46. [Google Scholar] [CrossRef]
- Bokobza, L. Natural rubber nanocomposites: A review. Nanomaterials 2018, 9, 12. [Google Scholar] [CrossRef]
- Stülke, J.; Hillen, W. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 1999, 2, 195–201. [Google Scholar] [CrossRef]
- Pavoncello, V.; Barras, F.; Bouveret, E. Degradation of exogenous fatty acids in Escherichia coli. Biomolecules 2022, 12, 1019. [Google Scholar] [CrossRef]
Glucose Feeding | Copolymer Composition (mol%) a | Molecular Weight b | Polymer Name | ||||
---|---|---|---|---|---|---|---|
Glucose (g/L) | Addition Time (h) | 3HB | 3HHx | 3H5HE | Mn (×104) | PDI | |
10 [10 × 1] | 0 | 96.8 | 0.2 | 3.0 | 15.4 | 3.98 | P(3HB-co-3 mol% 3H5HE) |
11.25 [3.75 × 3] | 0, 24, 48 | 79.7 | 1.0 | 19.3 | 3.98 | 4.53 | P(3HB-co-19 mol% 3H5HE) |
7.5 [2.5 × 3] | 0, 24, 48 | 52.0 | 0.8 | 47.2 | 8.56 | 2.33 | P(3HB-co-47 mol% 3H5HE) |
Ingredient | Compound Formulations in Each Sample (phr) a | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
P(3HB-co-3 mol% 3H5HE) | 100 | 100 | 0 | 0 | 0 | 0 | 0 |
P(3HB-co-19 mol% 3H5HE) | 0 | 0 | 100 | 100 | 0 | 0 | 0 |
P(3HB-co-47 mol% 3H5HE) | 0 | 0 | 0 | 0 | 100 | 100 | 100 |
Zinc oxide | 0 | 10 | 0 | 10 | 0 | 10 | 10 |
Stearic acid | 0 | 5 | 0 | 5 | 0 | 5 | 5 |
2-Mercaptobenzothiazole (MBT) | 0 | 10 | 0 | 10 | 0 | 10 | 10 |
Sulfur | 0 | 2 | 0 | 2 | 0 | 5 | 20 |
Curing time (min) b | 1 | 2 | 1 | 2 | 1 | 2 | 15 |
Sample | DSC 1st Heating | DSC 2nd Heating | DSC Cooling | TGA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tm (°C) | ΔHm (J/g) | Tg (°C) | Tcc (°C) | Tm (°C) | ΔHm (J/g) | Tc (°C) | ΔHc (J/g) | Td5 (°C) a | Td_max (°C) b | Residual Mass (%) | |
S1 | 166 | 73 | 2 | 52 | 170 | 70 | 92 | 55 | - | - | - |
S3 | 156 | 29 | −5 | 70 | 156 | 24 | ND | ND | - | - | - |
S5 | 153 | 4 | −15 | 60 | 156 | 9 | ND | ND | 251 | 319 | 1 |
S6 | 153 | 5 | −2 | 58 | 154 | 7 | ND | ND | 251 | 312 | 7 |
S7 | 156 | 4 | 1 | 49 | 155 | 4 | ND | ND | 251 | 331 | 9 |
Sample | Vulcanization Conditions | Peak Area at 1644 cm−1 (%) b | Swelling Ratio (%) c | Gel Fraction (%) c | Elemental Composition | |||
---|---|---|---|---|---|---|---|---|
Sulfur | Curing Time (min) | Sulfur (wt%) | Ash (wt%) | |||||
(phr) a | (wt%) | |||||||
S5 | 0 | 0 | 1 | 100 | Dissolved | Dissolved | 0 | 0.5 |
S6 | 5 | 4 | 2 | 87.8 ± 0.02 | 655 ± 172 | 93 ± 3 | 2.8 | 4.0 |
S7 | 20 | 14 | 15 | 88.4 ± 0.1 | 338 ± 26 | 94 ± 1 | 7.0 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamjapo, P.; Ceneviva, L.V.S.; Nakata, Y.; Miyahara, Y.; Tsuge, T. Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain. Polymers 2025, 17, 2561. https://doi.org/10.3390/polym17182561
Khamjapo P, Ceneviva LVS, Nakata Y, Miyahara Y, Tsuge T. Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain. Polymers. 2025; 17(18):2561. https://doi.org/10.3390/polym17182561
Chicago/Turabian StyleKhamjapo, Phimthong, Lucas Vinicius Santini Ceneviva, Yusuke Nakata, Yuki Miyahara, and Takeharu Tsuge. 2025. "Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain" Polymers 17, no. 18: 2561. https://doi.org/10.3390/polym17182561
APA StyleKhamjapo, P., Ceneviva, L. V. S., Nakata, Y., Miyahara, Y., & Tsuge, T. (2025). Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain. Polymers, 17(18), 2561. https://doi.org/10.3390/polym17182561