Flame-Retardant Wood Scrimber/Plywood Composites: Preparation, Characterization, and Enhanced Structural Performance
Abstract
1. Introduction
2. Experiments and Methods
2.1. Materials
2.2. Sample and Composite Preparation
2.3. Characterization
3. Results and Discussion
3.1. Flame-Retardant and Smoke-Suppression Performance
NBS Smoke Density Test Analysis
3.2. Flame Propagation and Penetration
3.3. Flame-Retardant Mechanism Analysis
3.4. Application Performance Analysis
3.4.1. Mechanical Properties at Ambient Temperature
3.4.2. Mechanical Properties After High-Temperature Exposure
3.4.3. Analysis of FIGRACone and SMOGRACone
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gérardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef]
- Burnard, M.D.; Kutnar, A. Wood and human stress in the built indoor environment: A review. Wood Sci. Technol. 2015, 49, 969–986. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Chutturi, M.; Gillela, S.; Yadav, S.M.; Wibowo, E.S.; Sihag, K.; Rangppa, S.M.; Bhuyar, P.; Siengchin, S.; Antov, P.; Kristak, L.; et al. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource. Sci. Total Environ. 2023, 864, 161067. [Google Scholar] [CrossRef]
- Sun, X.; He, M.; Liang, F.; Li, Z.; Wu, L.; Sun, Y. Experimental investigation into the mechanical properties of scrimber composite for structural applications. Constr. Build. Mater. 2021, 276, 122234. [Google Scholar] [CrossRef]
- Švajlenka, J.; Kozlovská, M.; Spišáková, M. The benefits of modern method of construction based on wood in the context of sustainability. Int. J. Environ. Sci. Technol. 2017, 14, 1591–1602. [Google Scholar] [CrossRef]
- Kumar, S.P.; Takamori, S.; Araki, H.; Kuroda, S. Flame retardancy of clay–sodium silicate composite coatings on wood for construction purposes. Rsc Adv. 2015, 5, 34109–34116. [Google Scholar] [CrossRef]
- Li, X.; Rao, F.; Li, N.; Lei, W.; Bao, M.; Bao, Y.; Li, L.; Duan, Z.; Zu, Q.; Zhang, Y.; et al. High-performance bamboo scrimber composite prepared from heat-treated Bambusa chungii units with different resin contents for outdoor use. Ind. Crops Prod. 2023, 205, 117503. [Google Scholar] [CrossRef]
- Kim, J.I.; Park, J.Y.; Kong, Y.T.; Lee, B.H.; Kim, H.J.; Roh, J.K. Performance on flame-retardant polyurethane coatings for wood and wood-based materials. J. Korean Wood Sci. Technol. 2002, 30, 172–179. [Google Scholar]
- EN 13501-1:2018; Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Test Data from Reaction to Fire Tests. European Committee for Standardization: Brussels, Belgium, 2018.
- GB 8624-2012; Classification for Burning Behavior of Building Materials and Products. Standardization Administration of China: Beijing, China, 2012.
- Popescu, C.M.; Pfriem, A. Treatments and modifification to improve the reaction to fifire of wood and wood-based products-an overview. Fir Mate. 2020, 44, 100–111. [Google Scholar] [CrossRef]
- Fu, F.C.; Fu, J.H.; Peng, Y.X.; Jiao, X.M.; Liu, H.; Du, F.P.; Zhang, Y.F. Dual-functional intumescent fifire-retardant/self-healing water-based plywood coatings. Prog. Org. Coat. 2021, 154, 106187. [Google Scholar]
- Rehman, Z.U.; Niaz, A.K.; Song, J.I.; Koo, B.H. Excellent fifire-retardant properties of CNF/VMT based LBL coatings deposited on polypropylene and wood-ply. Polymers 2021, 13, 303. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Qi, Y.; Yu, W. Novel engineered scrimber with outstanding dimensional stability from finely fluffed poplar veneers. Measurement 2018, 124, 318–321. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Wang, X. Progress in research on fire retardant–treated wood and wood-based composites: A Chinese perspective. For. Prod. J. 2010, 60, 668–678. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, G.; Zhang, F.; Luo, J.; Li, K.; Li, X.; Li, J.; Fang, Z. High strength and flame retardant soybean polysaccharide-based wood adhesive produced by borate chemistry and crosslinking strategy. Eur. Polym. J. 2022, 164, 110973. [Google Scholar] [CrossRef]
- Gao, S.; Qi, J.; Qi, P.; Xu, R.; Wu, T.; Zhang, B.; Huang, J.; Yan, Y. Unprecedented nonflammable organic adhesives leading to fireproof wood products. ACS Appl. Mater. Interfaces 2023, 15, 8609–8616. [Google Scholar] [CrossRef]
- Wu, M.; Song, W.; Wu, Y.; Qu, W. Preparation and characterization of the flame retardant decorated plywood based on the intumescent flame retardant adhesive. Materials 2020, 13, 676. [Google Scholar] [CrossRef]
- Shree, R.; Gunasekaran, G. Development of elastomeric intumescent fire-retardant coating for protection of structures at sub-zero temperature condition. Mater. Chem. Phys. 2023, 296, 127229. [Google Scholar] [CrossRef]
- Chen, S.N.; Lin, C.; Hsu, H.L.; Chen, X.H.; Huang, Y.C.; Hsieh, T.H.; Ho, K.S.; Lin, Y.J. Inorganic flame-retardant coatings based on magnesium potassium phosphate hydrate. Materials 2022, 15, 5317. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Chen, W.; Deng, H.; Chen, C.; Fan, Z.; Li, B.; Li, X. Halloysite-based aerogels by bidirectional freezing with mechanical properties, thermal insulation and flame retardancy. Appl. Clay Sci. 2022, 225, 106547. [Google Scholar] [CrossRef]
- Piperopoulos, E.; Scionti, G.; Atria, M.; Calabrese, L.; Proverbio, E. Flame-retardant performance evaluation of functional coatings filled with Mg(OH)2 and Al(OH)3. Polymers 2022, 14, 372. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lin, X.; Liu, Y.; Li, R.; Ren, X.; Huang, T.S. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose 2019, 26, 4213–4223. [Google Scholar] [CrossRef]
- Qi, J.; Pan, Y.; Luo, Z.; Wang, B. Facile and scalable fabrication of bioderived flame retardant based on adenine for enhancing fire safety of fully biodegradable PLA/PBAT/TPS ternary blends. J. Appl. Polym. Sci. 2021, 138, 50877. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, P.; Chen, Z.; Li, L.; Huang, Y. Flame retardancy, thermal stability, and hygroscopicity of wood materials modified with melamine and amino trimethylene phosphonic acid. Constr. Build. Mater. 2021, 267, 121042. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Deng, H.; Duan, W.; Zhu, J.; Wei, Y.; Li, W. Flame retardant properties of a guanidine phosphate–zinc borate composite flame retardant on wood. ACS Omega 2021, 6, 11015–11024. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Peng, Y.; Wang, W.; Cao, J. Thermal behavior and flame retardancy of poplar wood impregnated with furfuryl alcohol catalyzed by boron/phosphorus compound system. Ind. Crops Prod. 2022, 176, 114361. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Lu, J.; Wei, M.; Huang, Y.; Jiang, P. Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: Phytic acid, hydrolyzed collagen, and glycerol. ACS Omega 2021, 6, 3921–3930. [Google Scholar] [CrossRef]
- Jia, H.; Chen, Z.; Jiang, P.; Pan, F.; Li, L. Enhancing flame retardancy and antibacterial properties of wood veneer by promoting crosslinking in metal-organic framework structures. Constr. Build. Mater. 2024, 427, 136167. [Google Scholar] [CrossRef]
- Böttcher, H.; Jagota, C.; Trepte, J.; Kallies, K.H.; Haufe, H. Sol–gel composite films with controlled release of biocides. J. Control. Release 1999, 60, 57–65. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Creating water-repellent effects on wood by treatment with silanes. Holzforschung 2006, 60, 40–46. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds—A review. Wood Sci. Technol. 2004, 37, 453–461. [Google Scholar] [CrossRef]
- Pries, M.; Mai, C. Treatment of wood with silica sols against attack by wood-decaying fungi and blue stain. Holzforschung 2013, 67, 697–705. [Google Scholar] [CrossRef]
- De Vetter, L.; Cnudde, V.; Masschaele, B.; Jacobs, P.J.S.; Van Acker, J. Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CT. Mater. Charact. 2006, 56, 39–48. [Google Scholar] [CrossRef]
- Pan, M.; Mei, C.; Du, J.; Li, G. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2014, 66, 128–134. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Q.; Zhao, L.; Li, S.N.; Wu, L.B.; Jiang, J.X.; Tang, L.C. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer. J. Hazard Mater. 2017, 336, 222–231. [Google Scholar] [CrossRef]
- Kassaun, B.B.; Fatehi, P. Solvent-Free Lignin-Silsesquioxane wood coating formulation with superhydrophobic Flame-Retardant functionalities. Chem. Eng. J. 2024, 493, 152582. [Google Scholar] [CrossRef]
- Medina, L.; Schledjewski, R.; Schlarb, A.K. Process Related Mechanical Properties of Press Molded Natural Fiber Reinforced Polymers. Compos. Sci. Technol. 2009, 69, 1404–1411. [Google Scholar] [CrossRef]
- Uysal, B.; ÖZÇI˙ FÇI˙, A. The effects of impregnation chemicals on combustion properties of laminated wood material. Combust. Sci. Technol. 2004, 176, 117–133. [Google Scholar] [CrossRef]
- Sun, Z.; Lv, J.; Wang, Z.; Wu, Y.; Yuan, G.; Zuo, Y. Sodium silicate/waterborne epoxy resin hybrid-modified Chinese fir wood. Wood Sci. Technol. 2021, 55, 837–855. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.V.K.; Xiao, Z.; Wang, F.; Zheng, Z.; Che, W.; Xie, Y. Combustion behavior of poplar (Populus adenopoda Maxim.) and radiata pine (Pinus radiata Don.) treated with a combination of styrene-acrylic copolymer and sodium silicate. Eur. J. Wood Prod. 2019, 77, 439–452. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Q.; Xie, Y.; Wang, F.; Wang, Q. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants. RSC Adv. 2016, 6, 13890–13897. [Google Scholar] [CrossRef]
- Tian, F.; Mao, W.; Xu, X. Effect of a layered combination of APP and TBC on the mechanics and flame retardancy of poplar strandboards. Constr. Build. Mater. 2023, 401, 132881. [Google Scholar] [CrossRef]
- Lu, J.; Sun, X.; Chen, Z.; Jiang, P.; Li, L.; Wang, M. Sandwich-structure inspired super-tough and fire-resistant plywood containing vinyl acetate-ethylene based adhesive reinforced by melamine amino trimethyl phosphate and sodium lignosulfonate. Polym. Degrad. Stab. 2024, 221, 110669. [Google Scholar] [CrossRef]
- Reichel, V.; Berlin, W.; Rothe, F.; Beuscher, J.; Dröder, K. Study of Shear-Cutting Mechanisms on Wood Veneer Jl. Forests 2020, 11, 703. [Google Scholar] [CrossRef]
- Mao, W.; Tian, F.; Zhu, C.; Xu, D.L.; Jia, C.; Xu, X.W. Effect of flame retarding treatment with ammonium polyphosphite on properties of poplar flakeboards. J. For. Eng. 2023, 8, 71–78. [Google Scholar]
- Pan, F.; Jia, H.; Huang, Y.; Chen, Z.; Liang, S.; Jiang, P. Analyzing Temperature Distribution Patterns on the Facing and Backside Surface: Investigating Combustion Performance of Flame-Retardant Particle Boards Using Aluminum Hypophosphite, Intumescent, and Magnesium Hydroxide Flame Retardants. Polymers 2023, 15, 4479. [Google Scholar] [CrossRef]
- GB/T 17657-2022; Test Methods of Evaluating the Properties of Wood-Based Panels and Surface Decorated Wood-Based Panels. Standardization Administration of China: Beijing, China, 2022.
- GB 12441-2018; Fire-Retardant Coatings for Finishing. Ministry of Public Security of the People’s Republic of China: Beijing, China, 2018.
- ISO 5660-1:2015; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization: Geneva, Switzerland, 2015.
- Shu, Z.; Xu, X.; Yang, S.; Wang, Y. Integrated assessing fire hazard of polymer based on data of cone calorimeter. Polym. Bull. 2006, 5, 37. [Google Scholar]
- ISO 5659-2:2017; Plastics-Smoke generation Part 2: Determination of optical density by a single-chamber test. International Organization for Standardization: Geneva, Switzerland, 2017.
- Ma, J.; Gong, Y.; Zheng, G.; Fu, T.; Wang, X.L. Preparation of” Three Sources in One” Leather-based Intumescent Flame Retardant and Its Application in Thermoplastic Polyurethane Elastomer. Acta Polym. Sin. 2024, 55, 1575–1585. [Google Scholar]
- Liang, W.J.; Zhao, B.; Zhao, P.H.; Zhang, C.Y.; Liu, Y.Q. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy. Polym. Degrad. Stab. 2017, 135, 140–151. [Google Scholar] [CrossRef]
- Wang, P.; Chen, L.; Xiao, H.; Zhan, T. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin. Polym. Degrad. Stab. 2020, 171, 109023. [Google Scholar] [CrossRef]
- Lu, X.; Yu, M.; Wang, D.; Xiu, P.; Xu, C.; Lee, A.F.; Gu, X. Flame-retardant effect of a functional DOPO-based compound on lignin-based epoxy resins. Mater. Today Chem. 2021, 22, 100562. [Google Scholar] [CrossRef]
- Lin, M.; Guo, X.; Xu, Y.; Zhang, X.; Hu, D. A Top-Down Approach to the Fabrication of Flame-Retardant Wood Aerogel with In Situ-Synthesized Borax and Zinc Borate. Materials 2024, 17, 2638. [Google Scholar] [CrossRef]
- Shi, X.; Luo, S.; Du, X.; Li, Q.; Cheng, S. Improvement the Flame Retardancy and Thermal Conductivity of Epoxy Composites via Melamine Polyphosphate-Modified Carbon Nanotubes. Polymers 2022, 14, 3091. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Fu, T.; Xu, Y.J.; Li, D.F.; Wang, X.L.; Wang, Y.Z. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 2018, 354, 208–219. [Google Scholar] [CrossRef]
- Du, H.; Ren, J.; Fu, X.; Zhang, W.; Yang, R. Simultaneous improvements of the fire safety, mechanical properties and water resistance of vinyl ester resin composites by introducing microencapsulated ammonium polyphosphate by polytriazole. Compos. Part B Eng. 2022, 238, 109908. [Google Scholar] [CrossRef]
- Ding, W.D.; Koubaa, A.; Chaala, A. Mechanical properties of MMA-hardened hybrid poplar wood. Ind. Crops Prod. 2013, 46, 304–310. [Google Scholar] [CrossRef]
- Wei, J.G.; Rao, F.; Zhang, Y.H.; Li, C.G.; Yu, W.J. Effect of Veneer Crushing Process on Physical and Mechanical Properties of Scrimbers Made of Pinus radiata and Populus tomentosa. China Wood Indust 2019, 33, 51–54. [Google Scholar]
- Lin, Q.; Zhang, Y.; Yu, W. Improvement of dimensional stability of poplar scrimber by pre-compression treatment gluing technology. J. For. Eng. 2020, 6, 58–67. [Google Scholar]
- Cao, J.Z. Methods to Improve the Liquid Permeability of Wood. For. Mach. Woodwork. Equip. 2008, 36, 33–35. [Google Scholar]
- Luo, Z.F.; Zhang, X.F.; Pan, B.; Yan, X.H. Analysis of wood microfibril angle and crystallinity of Pinus elliottii plantation. J. Anhui Agric. Univ. 2012, 39, 774–776. [Google Scholar]
- GB/T 9846-2015; Plywood. Standardization Administration of China: Beijing, China, 2015.
- Gao, Q.; Lin, Q.; Huang, Y.; Hu, J.; Yu, W. High-performance wood scrimber prepared by a roller-pressing impregnation method. Constr. Build. Mater. 2023, 368, 130404. [Google Scholar] [CrossRef]
- Björn, S. The Development of a European Fire Classification System for Building ProductsTest Methods and Mathematical Modelling. Ph.D. Thesis, Lund University, Lund, Sweden, 2007. [Google Scholar]
- Li, J.H.; Jiang, P.; Chen, Z.L.; Li, L.M. Characteristic analysis of flame retardant particleboard using three methods of combustion performance evaluation. J. For. Eng. 2020, 5, 28–34. [Google Scholar]
Samples | Surface-Layer Flame Retardant | Core-Layer Flame Retardant | |||
---|---|---|---|---|---|
Pure wood (P-W) | - | - | |||
Al-NS (Al-N) | Al(OH)3 | (NH4)2SO4 | |||
AHMSa-SsSt (AHM-S) | AHM | MEL | Sa | Ss | St |
Sample | Tpk-HRR1 (s) | pk-HRR1 (kW/m2) | Tpk-HRR2 (s) | pk-HRR2 (kW/m2) | THR (800 s) (MJ/m2) | TSR (800 s) (m2/m2) | TTI (s) | FGI | FPI |
---|---|---|---|---|---|---|---|---|---|
P-W | 67 | 460.5 | 129.1 | 273.3 | 130.2 | 40.3 | 10 | 2.12 | 0.036 |
Al-N | 75 | 365.8 | 126.5 | 260.1 | 120.9 | 39.2 | 11 | 2.06 | 0.042 |
AHM-S | 78 | 403.1 | 390.4 | 148.1 | 100.8 | 37.6 | 14 | 0.38 | 0.094 |
Samples | Non-Ignition | Ignition | ||
---|---|---|---|---|
Dsmax | Ds (500 s) | Dsmax | Ds (500 s) | |
P-W | 621.4 | 621.4 | 53.70 | 43.04 |
Al-N | 464.3 | 464.3 | 52.80 | 45.01 |
AHM-S | 329.8 | 329.8 | 30.97 | 30.97 |
Samples | MOR (Mpa) | ΔMOR (%) | MOE (Mpa) | ΔMOE (%) |
---|---|---|---|---|
P-W | 100.01 | 46.2 | 10,982 | 83.5 |
P-W(BM) | 53.77 | 1809 | ||
Al-N | 79.94 | 46.1 | 7866 | 79.7 |
Al-N(BM) | 43.08 | 1593 | ||
AHM-S | 108.51 | 45.3 | 12,946 | 83.1 |
AHM-S(BM) | 59.27 | 2178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Song, F.; Wei, M.; Wang, A.; Xu, X.; Chen, Z.; Rong, R.; Jiang, P. Flame-Retardant Wood Scrimber/Plywood Composites: Preparation, Characterization, and Enhanced Structural Performance. Polymers 2025, 17, 2556. https://doi.org/10.3390/polym17182556
Yao L, Song F, Wei M, Wang A, Xu X, Chen Z, Rong R, Jiang P. Flame-Retardant Wood Scrimber/Plywood Composites: Preparation, Characterization, and Enhanced Structural Performance. Polymers. 2025; 17(18):2556. https://doi.org/10.3390/polym17182556
Chicago/Turabian StyleYao, Liyuan, Feifan Song, Ming Wei, Aijuan Wang, Xiaonan Xu, Zhilin Chen, Rui Rong, and Peng Jiang. 2025. "Flame-Retardant Wood Scrimber/Plywood Composites: Preparation, Characterization, and Enhanced Structural Performance" Polymers 17, no. 18: 2556. https://doi.org/10.3390/polym17182556
APA StyleYao, L., Song, F., Wei, M., Wang, A., Xu, X., Chen, Z., Rong, R., & Jiang, P. (2025). Flame-Retardant Wood Scrimber/Plywood Composites: Preparation, Characterization, and Enhanced Structural Performance. Polymers, 17(18), 2556. https://doi.org/10.3390/polym17182556